Home
Class 12
MATHS
The expressions 1+x,1+x+x^2,1+x+x^2+x^3,...

The expressions `1+x,1+x+x^2,1+x+x^2+x^3,.............1+x+x^2+..............+x^n` are mutiplied together and the terms of the product thus obtained are arranged in increasing powers of `x` in the from of `a_0+a_1x+a_2x^2+.................,` then sum of even coefficients?

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` Let `f(x)=(1+x)(1+x+x^(2))(1+x+x^(2)+x^(3))…(1+x+x^(2)+….+x^(20))`
Highest degree of `f(x)`
`=` highest degree of `x` present in the `f(x)`
`=1+2+3+…+20`
`=(20(21))/(2)=210`
Since in the expansion of `f(x)` degree of `x` from zero to `210`, all present so all terms containing `x^(0)`, `x^(1)`, `x^(2)`.....`x^(210)` will be present
`:.` total no. of terms `=210+1=211`
`(1+x)(1+x+x^(2))....(1+x+x^(2)+....+x^(20))`
`=a_(0)+a_(1)x+a_(2)x^(2)+....+a_(210)x^(210)`......`(i)`
Replacing `x` by `1//x`, we get
`(1+(1)/(x))(1+(1)/(x)+(1)/(x^(2)))....(1+(1)/(x)+(1)/(x^(2))+....+(1)/(x^(20)))`
`=a_(0)+(a_(1))/(x)+(a_(2))/(x^(2))+....+(a_(210))/(x_(210))`
Taking `L.C.M` both sides, we get
`(x+1)(x^(2)+x+1)....(x^(20)+x^(19)+....+x+1)`
`=a_(0)x^(210)+a_(1)x^(209)+...+a_(209)x+a_(210)`
Thus `a_(0)+x^(210)+a_(1)x^(209)+....+a_(209)x+a_(210)`
Thus `a_(r )=a_(210-r)`
`a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+.....`
`=(1+x)(1+x+x^(2))...(1+x+x^(2)+...+x^(20))`
Putting `x=1` in `(i)`
`:. a_(0)+a_(1)+a_(2)+....=21!`......`(ii)`
Again putting `x=-1`
`a_(0)-a_(1)+a_(2)-a_(3)+a_(4)=0`.........`(iii)`
Adding equation `(ii)` and `(iii)`, we have
`2[a_(0)+a_(2)+a_(4)+....]=21!`
`:.a_(0)+a_(2)+a_(4)+....=(21!)/(2)=` sum of even coefficients
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Matrix|4 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|4 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

The expansion 1+x,1+x+x^(2),1+x+x^(2)+x^(3),….1+x+x^(2)+…+x^(20) are multipled together and the terms of the product thus obtained are arranged in increasing powers of x in the form of a_(0)+a_(1)x+a_(2)x^(2)+… , then, Number of terms in the product

The expansion 1+x,1+x+x^(2),1+x+x^(2)+x^(3),….,1+x+x^(2)+…+x^(20) are multipled together and the terms of the product thus obtained are arranged in increasing powers of x in the form of a_(0)+a_(1)x+a_(2)x^(2)+… then, The value of (a_(r ))/(a_(n-r)) , where n is the degree of the product.

If (e^(x) -1)^(2) =a_0 +a_(1)x +a_(2) x^2 + ......oo then a_4 =

In the expansion of (1 + x) (1 + x+ x^(2)) …(1 + x + x^(2) +… +x^(2n)) , the sum of the coefficients is

Let f(x)=x+(1-x)x^3+(1-x)(1-x^2)x^3+.........+(1-x)(1-x^2)........(1-x^(n-1))x^n;(n >= 4) then :

If |x|lt1 then the coefficient of x^(3) in the expansion of log(1+x+x^(2)) is ascending power of x is

If (1+x+x^2+x^3)^100=a_0+a_1x+a_2x^2+.......+a_300x^300, then

If a_0,a_1,a_2,.... be the coefficients in the expansion of (1+x+x^2)^n in ascending powers of x. prove that : (i) a_0a_1-a_1a_2+a_2a_3-....=0

If (1+2x +3x^2)^10 = a_0 +a_1x +a_2x^2 + ……+a_20x^20 then a_1 = ?

lf (1 + x + x^2 + x^3)^5 = a_0+a_1x +a_2x^2+.....+a_(15)x^15 , then a_(10) equals to