Home
Class 12
MATHS
If (1+px+x^(2))^(n)=1+a(1)x+a(2)x^(2)+…+...

If `(1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n)`.
Which of the following is true for `1 lt r lt 2n`

A

(a) `(np+pr)a_(r )=(r+1)a_(r+1)+(r-1)a_(r-1)`

B

(b) `(np-pr)a_(r )=(r+1)a_(r+1)+(r-1-2n)a_(r-1)`

C

(c) `(np-pr)a_(r )=(r+1)a_(r+1)+(r-1-n)a_(r-1)`

D

(d) `(2np+pr)a_(r )=(r+1+n)a_(r+1)+(r+1-n)a_(r-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the expression given in the question: \[ (1 + px + x^2)^n = 1 + a_1 x + a_2 x^2 + \ldots + a_{2n} x^{2n} \] We need to analyze the coefficients \( a_r \) for \( 1 < r < 2n \). ### Step 1: Differentiate both sides with respect to \( x \) Differentiating the left-hand side using the chain rule: \[ \frac{d}{dx}[(1 + px + x^2)^n] = n(1 + px + x^2)^{n-1} \cdot (p + 2x) \] For the right-hand side, we differentiate term by term: \[ \frac{d}{dx}[1 + a_1 x + a_2 x^2 + \ldots + a_{2n} x^{2n}] = a_1 + 2a_2 x + 3a_3 x^2 + \ldots + 2n a_{2n} x^{2n-1} \] ### Step 2: Set the derivatives equal to each other Now we have: \[ n(1 + px + x^2)^{n-1} \cdot (p + 2x) = a_1 + 2a_2 x + 3a_3 x^2 + \ldots + 2n a_{2n} x^{2n-1} \] ### Step 3: Multiply both sides by \( (1 + px + x^2) \) Next, we multiply both sides by \( (1 + px + x^2) \): \[ n(1 + px + x^2)^{n} \cdot (p + 2x) = (a_1 + 2a_2 x + \ldots + 2n a_{2n} x^{2n-1})(1 + px + x^2) \] ### Step 4: Compare coefficients of \( x^r \) We need to find the coefficient of \( x^r \) on both sides. On the left-hand side, the coefficient of \( x^r \) can be derived from: - The term \( n \cdot p \) from the differentiation. - The contributions from the expansion of \( (1 + px + x^2)^n \). On the right-hand side, we will have contributions from: - \( a_r \) - \( p \cdot r \cdot a_r \) - \( (r-1) \cdot a_{r-1} \) - Other terms depending on the coefficients of \( x^{r-1} \) and \( x^{r-2} \). ### Step 5: Formulate the equation Setting the coefficients equal gives us: \[ n p a_r + 2n a_{r-1} = (r + 1) a_{r + 1} + p \cdot r \cdot a_r + (r - 1) a_{r - 1} \] ### Step 6: Rearranging the equation Rearranging the terms leads to: \[ n p a_r - p \cdot r \cdot a_r = (r + 1) a_{r + 1} + (r - 1) a_{r - 1} - 2n a_{r - 1} \] This can be simplified to: \[ (n p - p r) a_r = (r + 1) a_{r + 1} + (r - 1 - 2n) a_{r - 1} \] ### Conclusion From this equation, we can analyze the behavior of the coefficients \( a_r \) for \( 1 < r < 2n \) and determine which among the given options is true.

To solve the problem, we start with the expression given in the question: \[ (1 + px + x^2)^n = 1 + a_1 x + a_2 x^2 + \ldots + a_{2n} x^{2n} \] We need to analyze the coefficients \( a_r \) for \( 1 < r < 2n \). ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Matrix|4 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|4 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If (1 + x + x^(2) + x^(3))^(n) = a_(0) + a_(1)x + a_(2)x^(2)+"……….."a_(3n)x^(3n) then which of following are correct

Let n be positive integer such that, (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then a_(r) is :

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If (1+x+x^(2))^(3n+1)=a_(0)+a_(1)x+a_(2)x^(2)+…a_(6n+2)x^(6n+2) , then find the value of sum_(r=0)^(2n)(a_(3r)-(a_(3r+1)+a_(3r+2))/2) is______.

If (1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n) . The value of a_(1)+3a_(2)+5a_(3)+7a_(4)+….(4n-1)a_(2n) when p=-3 and n in even is

If (1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n) . The remainder obtained when a_(1)+5a_(2)+9a_(3)+13a_(4)+…+(8n-3)a_(2n) is divided by (p+2) is (a) 1 (b) 2 (c) 3 (d) 0

If log(1-x+x^(2))=a_(1)x+a_(2)x^(2)+a_(3)x^(3) +…and n is not a mutiple of 3 then a_(n) is equal to

If (1+x+x^(2))^(n)=1 +a_(1)x+a_(2)x^(2)+a_(3)x^(3) +……..+a_(2n).x^(2n) then prove that: (i) a_(1)+a_(3)+a_(5)+…..+a_(2n-1) =(3^(n)-1)/(2) (ii) a_(2)+a_(4)+a_(6)+……+a_(2n)=(3^(n)-1)/(2)

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then prove that a_(0)+a_(3)+a_(6)+a_(9)+……=3^(n-1)