Home
Class 12
MATHS
If (1+px+x^(2))^(n)=1+a(1)x+a(2)x^(2)+…+...

If `(1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n)`.
The remainder obtained when `a_(1)+5a_(2)+9a_(3)+13a_(4)+…+(8n-3)a_(2n)` is divided by `(p+2)` is (a) 1 (b) 2 (c) 3 (d) 0

A

`1`

B

`2`

C

`3`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the remainder when \( S = a_1 + 5a_2 + 9a_3 + 13a_4 + \ldots + (8n - 3)a_{2n} \) is divided by \( (p + 2) \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression given in the problem: \[ (1 + px + x^2)^n = 1 + a_1 x + a_2 x^2 + \ldots + a_{2n} x^{2n} \] This indicates that the coefficients \( a_r \) are derived from the expansion of \( (1 + px + x^2)^n \). 2. **Finding the Coefficients**: The coefficients \( a_r \) can be found using the binomial theorem and combinatorial methods, but we will focus on the expression we need to evaluate. 3. **Rewriting the Sum**: The sum \( S \) can be rewritten as: \[ S = \sum_{r=1}^{2n} (4r - 3) a_r = \sum_{r=1}^{2n} 4r a_r - 3 \sum_{r=1}^{2n} a_r \] Let \( T = \sum_{r=1}^{2n} a_r \). 4. **Finding \( T \)**: To find \( T \), we can substitute \( x = 1 \) in the original polynomial: \[ (1 + p + 1)^n = (p + 2)^n \] Therefore, we have: \[ T = (p + 2)^n - 1 \] 5. **Finding \( \sum_{r=1}^{2n} r a_r \)**: To find \( \sum_{r=1}^{2n} r a_r \), we differentiate the original expression: \[ \frac{d}{dx}((1 + px + x^2)^n) = n(1 + px + x^2)^{n-1}(p + 2x) \] Evaluating at \( x = 1 \): \[ n(1 + p + 1)^{n-1}(p + 2) = n(p + 2)^{n-1}(p + 2) = n(p + 2)^n \] Thus: \[ \sum_{r=1}^{2n} r a_r = n(p + 2)^n \] 6. **Substituting Back**: Now substituting back into the expression for \( S \): \[ S = 4(n(p + 2)^n) - 3((p + 2)^n - 1) \] Simplifying this gives: \[ S = 4n(p + 2)^n - 3(p + 2)^n + 3 = (4n - 3)(p + 2)^n + 3 \] 7. **Finding the Remainder**: We need to find the remainder when \( S \) is divided by \( (p + 2) \): \[ S \equiv 3 \mod (p + 2) \] ### Final Answer: Thus, the remainder obtained when \( S \) is divided by \( (p + 2) \) is **3**.

To solve the problem, we need to find the remainder when \( S = a_1 + 5a_2 + 9a_3 + 13a_4 + \ldots + (8n - 3)a_{2n} \) is divided by \( (p + 2) \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression given in the problem: \[ (1 + px + x^2)^n = 1 + a_1 x + a_2 x^2 + \ldots + a_{2n} x^{2n} ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Matrix|4 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|4 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If (1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n) . The value of a_(1)+3a_(2)+5a_(3)+7a_(4)+….(4n-1)a_(2n) when p=-3 and n in even is

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then prove that a_(0)+a_(3)+a_(6)+a_(9)+……=3^(n-1)

If (1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n) . Which of the following is true for 1 lt r lt 2n

(1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2) +......+a_(n)x^(n) then Find the sum of the series a_(0) +a_(2)+a_(4) +……

If (1+x+x)^(2n)=a_(0)+a_(1)x+a_(2)x^(2)+a_(2n)x^(2n) , then a_(1)+a_(3)+a_(5)+……..+a_(2n-1) is equal to

If log(1-x+x^(2))=a_(1)x+a_(2)x^(2)+a_(3)x^(3) +…and n is not a mutiple of 3 then a_(n) is equal to

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_2 +a_4+……+a_(2n) = (3^n +1)/(2)

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) where a_(0) , a(1) , a(2) are unequal and in A.P., then (1)/(a_(n)) is equal to :

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is