Home
Class 12
MATHS
If (1+px+x^(2))^(n)=1+a(1)x+a(2)x^(2)+…+...

If `(1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n)`.
The value of `a_(1)+3a_(2)+5a_(3)+7a_(4)+….(4n-1)a_(2n)` when `p=-3` and `n in` even is

A

`n`

B

`2n-1`

C

`2n-2`

D

`2n`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a_1 + 3a_2 + 5a_3 + 7a_4 + \ldots + (4n-1)a_{2n} \) given that \( (1 + px + x^2)^n = 1 + a_1 x + a_2 x^2 + \ldots + a_{2n} x^{2n} \), with \( p = -3 \) and \( n \) being an even number. ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression \( (1 + px + x^2)^n \). Here, we will substitute \( p = -3 \): \[ (1 - 3x + x^2)^n \] 2. **Using the Binomial Theorem**: We can expand \( (1 - 3x + x^2)^n \) using the multinomial expansion. The coefficients \( a_k \) represent the coefficients of \( x^k \) in the expansion. 3. **Finding the Required Sum**: We need to evaluate: \[ S = a_1 + 3a_2 + 5a_3 + 7a_4 + \ldots + (4n-1)a_{2n} \] This can be expressed as: \[ S = \sum_{r=1}^{2n} (2r - 1) a_r \] 4. **Separating the Terms**: We can separate the sum: \[ S = 2 \sum_{r=1}^{n} r a_r - \sum_{r=1}^{2n} a_r \] 5. **Finding the Values**: We know from the binomial expansion that: \[ \sum_{r=0}^{2n} a_r = (1 - 3 + 1)^n = (-1)^n \] Since \( n \) is even, \( (-1)^n = 1 \). Thus: \[ \sum_{r=1}^{2n} a_r = 1 - a_0 = 1 - 1 = 0 \] 6. **Calculating \( \sum_{r=1}^{n} r a_r \)**: We also have: \[ S = 2 \sum_{r=1}^{n} r a_r - 0 = 2 \sum_{r=1}^{n} r a_r \] Now, using the formula for \( S \): \[ S = 2(n - 1) + 1 = 2n - 1 \] 7. **Final Calculation**: Substituting \( p = -3 \) and \( n \) being even, we can simplify \( S \): \[ S = 2n - 1 + 1 = 2 \] ### Conclusion: Thus, the value of \( a_1 + 3a_2 + 5a_3 + 7a_4 + \ldots + (4n-1)a_{2n} \) when \( p = -3 \) and \( n \) is even is: \[ \boxed{2} \]

To solve the problem, we need to find the value of \( a_1 + 3a_2 + 5a_3 + 7a_4 + \ldots + (4n-1)a_{2n} \) given that \( (1 + px + x^2)^n = 1 + a_1 x + a_2 x^2 + \ldots + a_{2n} x^{2n} \), with \( p = -3 \) and \( n \) being an even number. ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression \( (1 + px + x^2)^n \). Here, we will substitute \( p = -3 \): \[ (1 - 3x + x^2)^n ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Matrix|4 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|4 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then prove that a_(0)+a_(3)+a_(6)+a_(9)+……=3^(n-1)

If (1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n) . The remainder obtained when a_(1)+5a_(2)+9a_(3)+13a_(4)+…+(8n-3)a_(2n) is divided by (p+2) is (a) 1 (b) 2 (c) 3 (d) 0

If (1+x+x)^(2n)=a_(0)+a_(1)x+a_(2)x^(2)+a_(2n)x^(2n) , then a_(1)+a_(3)+a_(5)+……..+a_(2n-1) is equal to

If (1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n) . Which of the following is true for 1 lt r lt 2n

If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_2 +a_4+……+a_(2n) = (3^n +1)/(2)

(1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2) +......+a_(n)x^(n) then Find the sum of the series a_(0) +a_(2)+a_(4) +……

If (1+x+x^(2))^(n)=1 +a_(1)x+a_(2)x^(2)+a_(3)x^(3) +……..+a_(2n).x^(2n) then prove that: (i) a_(1)+a_(3)+a_(5)+…..+a_(2n-1) =(3^(n)-1)/(2) (ii) a_(2)+a_(4)+a_(6)+……+a_(2n)=(3^(n)-1)/(2)

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is