Home
Class 12
MATHS
if omega ne 1 is a cube root of unity a...

if` omega ne 1` is a cube root of unity and `x+y +x ne 0,` then prove that `|{:((x )/(1+ omega),,(y)/(omega+omega^(2)),,(z)/(omega^(2)+1)),((y)/(omega+omega^(2)),,(z)/(omega^(2)+1),,(x)/(1+omega)),((z)/(omega^(2)+1),,(x)/(1+omega),,(y)/(omega+omega^(2))):}|`

A

`x^(2)+y^(2)+z^(2)=0`

B

`x+yomega+zomega^(2)=0` or `x=y=z`

C

`x ne y ne z ne 0`

D

x=2y=3z

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` As `1+omega+omega^(2)=0`
`D=|{:(-(x)/(omega^(2)),-y,-(z)/(omega)),(-y,-(z)/(omega),-(x)/(omega^(2))),(-(z)/(omega),-(x)/(omega^(2)),-y):}|=x^(3_+y^(3)+z^(3)-3xyz`
`=(1)/(2)(x+y+z){(x-y)^(2)+(y-z)^(2)+(z-x)^(2)}`
`=(x+y+z)(x+yomega+zomega^(2))(x+yomega^(2)+zomega)`
The determinant varnishes if `x=y=z` or `x+yomega+zomega^(2)=0`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

If omega!=1 is a cube root of unity and x+y+z!=0, then prove that |[x/(1+omega), y/(omega+omega^2),z/(omega^2+1)],[y/(omega+omega^2),z/(omega^2+1),x/(1+omega)],[(z)/(omega^2+1),x/(1+omega),y/(omega+omega^2)]|=0 if x=y=z

if omega!=1 is cube root of unity and x+y+z != 0 then |[x/(1+omega),y/(omega+omega^2),z/(omega^2+1)],[y/(omega+omega^2),z/(omega^2+1),x/(1+omega)],[z/(omega^2+1),x/(1+omega),y/(omega+omega^2)]| =0 if

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega is a complex cube root of unity, then a root of the equation |(x +1,omega,omega^(2)),(omega,x + omega^(2),1),(omega^(2),1,x + omega)| = 0 , is

If omega is a cube root of unity, then Root of polynomial is |(x + 1,omega,omega^(2)),(omega,x + omega^(2),1),(omega^(2),1,x + omega)|

If omega is a cube root of unity, then find the value of the following: (1-omega)(1-omega^2)(1-omega^4)(1-omega^8)

If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]

If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]

If 1, omega, omega^(2) are three cube roots of unity, prove that (1)/(1 + omega) + (1)/(1+ omega^(2))=1

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =