Home
Class 12
MATHS
If a=cos((4pi)/3)+isin((4pi)/3) then ...

If `a=cos((4pi)/3)+isin((4pi)/3)` then `|(1,1,1),(1,a,a^2),(1,a^2,a)|` (a) purely real (b) purely imaginary (c) `0` (d) none of these

A

purely real

B

purely imaginary

C

`0`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinant \( |(1,1,1),(1,a,a^2),(1,a^2,a)| \) where \( a = \cos\left(\frac{4\pi}{3}\right) + i \sin\left(\frac{4\pi}{3}\right) \). ### Step-by-Step Solution: 1. **Identify \( a \)**: \[ a = \cos\left(\frac{4\pi}{3}\right) + i \sin\left(\frac{4\pi}{3}\right) \] The angle \( \frac{4\pi}{3} \) is in the third quadrant, where: \[ \cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2}, \quad \sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2} \] Therefore, \[ a = -\frac{1}{2} - i \frac{\sqrt{3}}{2} \] 2. **Set up the determinant**: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{vmatrix} \] 3. **Apply column operations**: Replace \( C_2 \) with \( C_2 - C_1 \) and \( C_3 \) with \( C_3 - C_1 \): \[ D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & a - 1 & a^2 - 1 \\ 1 & a^2 - 1 & a - 1 \end{vmatrix} \] 4. **Expand the determinant**: Using the first row for expansion: \[ D = 1 \cdot \begin{vmatrix} a - 1 & a^2 - 1 \\ a^2 - 1 & a - 1 \end{vmatrix} \] The determinant of a \( 2 \times 2 \) matrix is given by \( ad - bc \): \[ D = (a - 1)(a - 1) - (a^2 - 1)(a^2 - 1) \] \[ = (a - 1)^2 - (a^2 - 1)^2 \] 5. **Simplify the expression**: Let \( x = a - 1 \) and \( y = a^2 - 1 \): \[ D = x^2 - y^2 = (x - y)(x + y) \] Where: \[ x = a - 1 = -\frac{1}{2} - i\frac{\sqrt{3}}{2} - 1 = -\frac{3}{2} - i\frac{\sqrt{3}}{2} \] \[ y = a^2 - 1 = \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^2 - 1 \] Calculate \( a^2 \): \[ a^2 = \left(-\frac{1}{2}\right)^2 + 2\left(-\frac{1}{2}\right)\left(-i\frac{\sqrt{3}}{2}\right) + \left(-i\frac{\sqrt{3}}{2}\right)^2 \] \[ = \frac{1}{4} + i\frac{\sqrt{3}}{2} - \frac{3}{4} = -\frac{1}{2} + i\frac{\sqrt{3}}{2} \] Thus: \[ y = -\frac{1}{2} + i\frac{\sqrt{3}}{2} - 1 = -\frac{3}{2} + i\frac{\sqrt{3}}{2} \] 6. **Calculate \( x - y \) and \( x + y \)**: \[ x - y = (-\frac{3}{2} - i\frac{\sqrt{3}}{2}) - (-\frac{3}{2} + i\frac{\sqrt{3}}{2}) = -i\sqrt{3} \] \[ x + y = (-\frac{3}{2} - i\frac{\sqrt{3}}{2}) + (-\frac{3}{2} + i\frac{\sqrt{3}}{2}) = -3 \] 7. **Final result**: \[ D = (-i\sqrt{3})(-3) = 3i\sqrt{3} \] Since this is purely imaginary, the answer is: \[ \text{(b) purely imaginary} \]

To solve the given problem, we need to evaluate the determinant \( |(1,1,1),(1,a,a^2),(1,a^2,a)| \) where \( a = \cos\left(\frac{4\pi}{3}\right) + i \sin\left(\frac{4\pi}{3}\right) \). ### Step-by-Step Solution: 1. **Identify \( a \)**: \[ a = \cos\left(\frac{4\pi}{3}\right) + i \sin\left(\frac{4\pi}{3}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

If a=cos""(4pi)/(3)+isin""(4pi)/(3) , then the value of ((1+a)/(2))^(3n) is :

If x=ycos((2pi)/3)=zcos((4pi)/3) , then xy+yz+zx= (a) -1 (b) 0 (c) 1 (d) 2

If |z_1|=|z_2| and arg((z_1)/(z_2))=pi , then z_1+z_2 is equal to (a) 0 (b) purely imaginary (c) purely real (d) none of these

If z is a unimodular number (!=+-i) then (z+i)/(z-i) is (A) purely real (B) purely imaginary (C) an imaginary number which is not purely imaginary (D) both purely real and purely imaginary

If b_1. b_2=2(c_1+c_2) then at least one of the equation x^2+b_1x+c_1=0 and x^2+b_2x+c_2=0 has a) imaginary roots b) real roots c) purely imaginary roots d) none of these

int_0^oo(x dx)/((1+x)(1+x^2)) is equal to (A) pi/4 (B) pi/2 (C) pi (D) none of these"

If tan^(-1)(cottheta)=2\ theta , then theta= (a) +-pi/3 (b) +-pi/4 (c) +-pi/6 (d) none of these

tan(pi/4+1/2cos^(-1)x)+tan(pi/4-1/2cos^(-1)x),x!=0, is equal to x (b) 2x (c) 2/x (d) none of these

Value of cos^(-1) (-(1)/(2)) + sin ^(-1)""(1)/(2) is: a) 2 pi b) (pi)/(2) c) pi d) none of these

The number of solutions of equation tan^(-1)2x+tan^(-1)3x=pi/4 is (a) 2 (b) 3 (c) 1 (d) none of these