Home
Class 12
MATHS
If alpha is a root of x^4 = 1 with negat...

If `alpha` is a root of `x^4 = 1` with negative principal argument then the principal argument of `Delta(alpha) = |(1,1,1), (alpha^n, alpha^(n+1), alpha^(n+3)), (1/alpha^(n+1), 1/alpha^n, 0)|` is

A

`(5pi)/(14)`

B

`-(3pi)/(4)`

C

`(pi)/(4)`

D

`-(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the principal argument of the determinant \( \Delta(\alpha) = \begin{vmatrix} 1 & 1 & 1 \\ \alpha^n & \alpha^{n+1} & \alpha^{n+3} \\ \frac{1}{\alpha^{n+1}} & \frac{1}{\alpha^n} & 0 \end{vmatrix} \), where \( \alpha \) is a root of \( x^4 = 1 \) with a negative principal argument, we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Roots of \( x^4 = 1 \)**: The roots of the equation \( x^4 = 1 \) are \( 1, i, -1, -i \). Since we need the root with a negative principal argument, we choose \( \alpha = -i \). **Hint**: Remember that the principal argument of a complex number is the angle it makes with the positive x-axis, measured in radians. 2. **Substitute \( \alpha \) into the Determinant**: We substitute \( \alpha = -i \) into the determinant: \[ \Delta(-i) = \begin{vmatrix} 1 & 1 & 1 \\ (-i)^n & (-i)^{n+1} & (-i)^{n+3} \\ \frac{1}{(-i)^{n+1}} & \frac{1}{(-i)^n} & 0 \end{vmatrix} \] **Hint**: Recall that \( (-i)^k = e^{-i\frac{\pi}{2}k} \) for integer \( k \). 3. **Calculate the Entries of the Determinant**: The entries of the determinant become: - First row: \( 1, 1, 1 \) - Second row: \( (-i)^n, (-i)^{n+1}, (-i)^{n+3} \) - Third row: \( \frac{1}{(-i)^{n+1}}, \frac{1}{(-i)^n}, 0 \) **Hint**: Use properties of exponents to simplify \( (-i)^k \). 4. **Expand the Determinant**: We can use the determinant formula: \[ \Delta(-i) = 1 \cdot \begin{vmatrix} (-i)^{n+1} & (-i)^{n+3} \\ \frac{1}{(-i)^{n+1}} & 0 \end{vmatrix} - 1 \cdot \begin{vmatrix} (-i)^n & (-i)^{n+3} \\ \frac{1}{(-i)^{n}} & 0 \end{vmatrix} + 1 \cdot \begin{vmatrix} (-i)^n & (-i)^{n+1} \\ \frac{1}{(-i)^{n}} & \frac{1}{(-i)^{n+1}} \end{vmatrix} \] **Hint**: Remember that the determinant of a 2x2 matrix \( \begin{vmatrix} a & b \\ c & d \end{vmatrix} \) is calculated as \( ad - bc \). 5. **Calculate Each 2x2 Determinant**: - For the first determinant: \[ \begin{vmatrix} (-i)^{n+1} & (-i)^{n+3} \\ \frac{1}{(-i)^{n+1}} & 0 \end{vmatrix} = 0 - (-i)^{n+1} \cdot \frac{1}{(-i)^{n+3}} = \frac{(-i)^{n+1}}{(-i)^{n+3}} = (-i)^{-2} = -1 \] - For the second determinant: \[ \begin{vmatrix} (-i)^n & (-i)^{n+3} \\ \frac{1}{(-i)^{n}} & 0 \end{vmatrix} = 0 - (-i)^n \cdot \frac{1}{(-i)^{n+3}} = \frac{(-i)^{n}}{(-i)^{n+3}} = (-i)^{-3} = i \] - For the third determinant: \[ \begin{vmatrix} (-i)^n & (-i)^{n+1} \\ \frac{1}{(-i)^{n}} & \frac{1}{(-i)^{n+1}} \end{vmatrix} = \frac{(-i)^{n}}{(-i)^{n+1}} - \frac{(-i)^{n+1}}{(-i)^{n}} = -1 + 1 = 0 \] **Hint**: Pay attention to the signs and the properties of complex numbers. 6. **Combine the Results**: Putting it all together: \[ \Delta(-i) = 1(-1) - 1(i) + 1(0) = -1 - i \] **Hint**: Ensure you keep track of the signs when combining terms. 7. **Find the Principal Argument**: The principal argument of \( -1 - i \) can be found using the formula: \[ \text{arg}(-1 - i) = \tan^{-1}\left(\frac{-1}{-1}\right) + \pi = \tan^{-1}(1) + \pi = \frac{\pi}{4} + \pi = \frac{5\pi}{4} \] **Hint**: The angle is in the third quadrant where both sine and cosine are negative. ### Final Answer: The principal argument of \( \Delta(\alpha) \) is \( \frac{5\pi}{4} \).

To find the principal argument of the determinant \( \Delta(\alpha) = \begin{vmatrix} 1 & 1 & 1 \\ \alpha^n & \alpha^{n+1} & \alpha^{n+3} \\ \frac{1}{\alpha^{n+1}} & \frac{1}{\alpha^n} & 0 \end{vmatrix} \), where \( \alpha \) is a root of \( x^4 = 1 \) with a negative principal argument, we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Roots of \( x^4 = 1 \)**: The roots of the equation \( x^4 = 1 \) are \( 1, i, -1, -i \). Since we need the root with a negative principal argument, we choose \( \alpha = -i \). **Hint**: Remember that the principal argument of a complex number is the angle it makes with the positive x-axis, measured in radians. ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

The variance of observation x_(1), x_(2),x_(3),…,x_(n) is sigma^(2) then the variance of alpha x_(1), alpha x_(2), alpha x_(3),….,alpha x_(n), (alpha != 0) is

If alpha is a non-real fifth root of unity, then the value of 3^(|1+alpha+alpha^(2),alpha^(-2)-alpha^(-1)| , is

If a is a non-real fourth root of unity, then the value of alpha^(4n-1)+alpha^(4n-2)+alpha^(4n-3), n in N is

The value of tan alpha +2tan(2alpha)+4tan(4alpha)+...+2^(n-1)tan(2^(n-1)alpha)+2^ncot(2^nalpha) is

Find the coefficient of alpha^(6) in the product (1+alpha+alpha^(2))(1+alpha+alpha^(2))(1+alpha+alpha^(2)+alpha^(3)) (1+alpha)(1+alpha)(1+alpha) .

If pi/2 < alpha < 3pi /2 then the modulus argument of (1+cos 2alpha)+i sin2alpha

If (3pi)/2 < alpha < 2pi then the modulus argument of (1+cos 2alpha)+i sin2alpha

If alpha is root of equation f(x)=0 then the value of (alpha+ 1/alpha)^2+(alpha^2+ 1/alpha^2)^2+(alpha^3+1/alpha^3)+………+(alpha^6+ 1/alpha^6)^2 is (A) 18 (B) 54 (C) 6 (D) 12

If f(x) = alphax^(n) prove that alpha = (f'(1))/n

Let alpha be a root of the equation x ^(2) - x+1=0, and the matrix A=[{:(1,1,1),(1, alpha , alpha ^(2)), (1, alpha ^(2), alpha ^(4)):}] and matrix B= [{:(1,-1, -1),(1, alpha, - alpha ^(2)),(-1, -alpha ^(2), - alpha ^(4)):}] then the vlaue of |AB| is: