Home
Class 12
MATHS
If a^(2) + b^(2) + c^(3) + ab + bc + ca ...

If `a^(2) + b^(2) + c^(3) + ab + bc + ca le 0` for all, `a, b, c in R`, then the value of the determinant
`|((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))|`, is equal to

A

`65`

B

`a^(2)+b^(2)+c^(2)+31`

C

`4(a^(2)+b^(2)+c^(2))`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given the condition \( a^2 + b^2 + c^2 + ab + bc + ca \leq 0 \) for all \( a, b, c \in \mathbb{R} \). ### Step-by-Step Solution: 1. **Understanding the Condition**: The expression \( a^2 + b^2 + c^2 + ab + bc + ca \) can be rewritten as: \[ \frac{1}{2} \left( (a+b)^2 + (b+c)^2 + (c+a)^2 \right) \leq 0 \] This implies that each squared term must be zero, leading to: \[ a + b = 0, \quad b + c = 0, \quad c + a = 0 \] From these equations, we can conclude that \( a = 0, b = 0, c = 0 \). 2. **Substituting Values into the Determinant**: We substitute \( a = 0, b = 0, c = 0 \) into the determinant: \[ D = \begin{vmatrix} (0 + 0 + 2)^2 & 0^2 + 0^2 & 1 \\ 1 & (0 + 0 + 2)^2 & 0^2 + 0^2 \\ 0^2 + 0^2 & 1 & (0 + 0 + 2)^2 \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} 4 & 0 & 1 \\ 1 & 4 & 0 \\ 0 & 1 & 4 \end{vmatrix} \] 3. **Calculating the Determinant**: We can calculate the determinant using the formula for a 3x3 matrix: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ D = 4(4 \cdot 4 - 0 \cdot 1) - 0(1 \cdot 4 - 0 \cdot 0) + 1(1 \cdot 0 - 4 \cdot 0) \] This simplifies to: \[ D = 4(16) - 0 + 0 = 64 \] 4. **Final Calculation**: The determinant value is: \[ D = 64 \] ### Final Result: Thus, the value of the determinant is \( \boxed{64} \).

To solve the problem, we need to evaluate the determinant given the condition \( a^2 + b^2 + c^2 + ab + bc + ca \leq 0 \) for all \( a, b, c \in \mathbb{R} \). ### Step-by-Step Solution: 1. **Understanding the Condition**: The expression \( a^2 + b^2 + c^2 + ab + bc + ca \) can be rewritten as: \[ \frac{1}{2} \left( (a+b)^2 + (b+c)^2 + (c+a)^2 \right) \leq 0 ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

The value of determinant |{:(a^(2),a^(2)-(b-c)^(2),bc),(b^(2),b^(2)-(c-a)^(2),ca),(c^(2),c^(2)-(a-b)^(2),ab):}| is

Find the value of the determinant |{:(a^2,a b, a c),( a b,b^2,b c), (a c, b c,c^2):}|

The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)| , is

Without expanding, show that the value of each of the determinants is zero: |1/a a^2 bc 1/b b^2 ac 1/c c^2 ab|

Prove that |{:(a,,a^(2),,bc),(b ,,b^(2),,ac),( c,,c^(2),,ab):}| = |{:(1,,1,,1),(a^(2) ,,b^(2),,c^(2)),( a^(3),, b^(3),,c^(3)):}|

Prove that : |{:(a^(2),b^(2)+c^(2),bc),(b^(2),c^(2)+a^(2),ca),(c^(2),a^(2)+b^(2),ab):}|=-(a-b)(b-c)(c-a)(a+b+c)(a^(2)+b^(2)+c^(2))

Using properties of determinant prove that |(a^(2)+1, ab, ac),(ab, b^(2)+1, bc),(ca, cb,c^(2)+1)|=(1+a^(2)+b^(2)+c^(2)) .

If a, b, c are non zero complex numbers satisfying a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2),ab,ac),(ab,c^(2) + a^(2),bc),(ac,bc,a^(2) + b^(2))| = k a^(2) b^(2) c^(2) , then k is equal to

If a-b-c= 3 and a^(2) + b^(2) + c^(2) = 77 , find: ab- bc+ ca

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0