Home
Class 12
MATHS
Product of roots of equation |(1+2x,1,1-...

Product of roots of equation `|(1+2x,1,1-x),(2-x,2+x,3+x),(x,1+x,1-x^2)|=0` is

A

`1//2`

B

`3//4`

C

`4//3`

D

`1//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product of the roots of the equation given by the determinant: \[ \left| \begin{array}{ccc} 1 + 2x & 1 & 1 - x \\ 2 - x & 2 + x & 3 + x \\ x & 1 + x & 1 - x^2 \end{array} \right| = 0 \] ### Step 1: Simplify the Determinant We can simplify the determinant by performing column operations. First, we can change column 1 to column 1 minus column 2: \[ C_1 \rightarrow C_1 - C_2 \] This gives us: \[ \left| \begin{array}{ccc} (1 + 2x - 1) & 1 & 1 - x \\ (2 - x - (2 + x)) & (2 + x) & (3 + x) \\ (x - (1 + x)) & (1 + x) & (1 - x^2) \end{array} \right| = \left| \begin{array}{ccc} 2x & 1 & 1 - x \\ -x & 2 + x & 3 + x \\ 0 & 1 + x & 1 - x^2 \end{array} \right| \] ### Step 2: Further Simplify the Determinant Next, we can change column 3 to column 3 minus column 2: \[ C_3 \rightarrow C_3 - C_2 \] This results in: \[ \left| \begin{array}{ccc} 2x & 1 & (1 - x) - (2 + x) \\ -x & (2 + x) & (3 + x) - (2 + x) \\ 0 & (1 + x) & (1 - x^2) - (1 + x) \end{array} \right| = \left| \begin{array}{ccc} 2x & 1 & -1 - 2x \\ -x & 2 + x & 1 \\ 0 & 1 + x & -x^2 - x \end{array} \right| \] ### Step 3: Expand the Determinant Now we can expand the determinant along the first row: \[ = 2x \left| \begin{array}{cc} 2 + x & 1 \\ 1 + x & -x^2 - x \end{array} \right| - 1 \left| \begin{array}{cc} -x & 1 \\ 0 & -x^2 - x \end{array} \right| + (-1 - 2x) \left| \begin{array}{cc} -x & 2 + x \\ 0 & 1 + x \end{array} \right| \] Calculating the 2x determinant: \[ = 2x \left( (2 + x)(-x^2 - x) - 1(1 + x) \right) \] Calculating the second determinant: \[ = -(-x)(-x^2 - x) = x^3 + x^2 \] Calculating the third determinant: \[ = (-1 - 2x)(-x(1 + x)) = (1 + 2x)x(1 + x) \] ### Step 4: Combine and Set to Zero Now we combine all these results and set the determinant equal to zero: \[ 2x \left( -2x^2 - 3x - 1 \right) + x^3 + x^2 + (1 + 2x)x(1 + x) = 0 \] This simplifies to a polynomial in \(x\): \[ -2x^4 - 6x^3 - 3x^2 - 1 = 0 \] ### Step 5: Find the Product of Roots The product of the roots of a polynomial \(ax^n + bx^{n-1} + ... + k = 0\) is given by \(-\frac{k}{a}\). Here, \(a = -2\) and \(k = -1\): \[ \text{Product of roots} = -\frac{-1}{-2} = \frac{1}{2} \] ### Final Answer The product of the roots of the equation is: \[ \frac{1}{2} \]

To solve the problem, we need to find the product of the roots of the equation given by the determinant: \[ \left| \begin{array}{ccc} 1 + 2x & 1 & 1 - x \\ 2 - x & 2 + x & 3 + x \\ x & 1 + x & 1 - x^2 \end{array} \right| = 0 ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

The sum of the real roots of the equation |{:(x, -6, -1), (2, -3x, x-3), (-3, 2x, x+2):}| = 0, is equal to

for the equation |{:(1,,x,,x^(2)),(x^(2),,1,,x),(x,,x^(2),,1):}|=0

The number of irrational roots of the equation (x-1) (x-2) (3x-2) ( 3x +1) =21 is

Find the root of the equation |x-1|^(x^(2)+x-2)=1

Which of the following is not the root of the equation |[x,-6,-1],[ 2,-3x,x-3],[-3, 2x,x+2]|=0? a. 2 b. 0 c. 1 d. -3

The Number of real roots of equation 2^x + 2^(x-1)+2^(x-2) =7^x + 7^(x-1)+7^(x-2) is

The number of roots of the equation 1+log_(2)(1-x)=2^(-x) , is

Find the roots of the equation 2x^2 - x + 1/8 = 0

The roots of the equation det [(1-x, 2, 3),(0,2-x,0),(0,2,3-x)]=0 are (A) 1 and 2 (B) 1 and 3 (C) 2 and 3 (D) 1,2, and 3

Find the number of real roots of the equation (x-1)^2+(x-2)^2+(x-3)^2=0.