Home
Class 12
MATHS
If x!=0,y!=0,z!=0a n d|1+x1 1 1+y1+2y1 1...

If `x!=0,y!=0,z!=0a n d|1+x1 1 1+y1+2y1 1+z1+z1+3z|=0` , then `x^(-1)+y^(-1)+z^(-1)` is equal to `1` b. `-1` c. `-3` d. none of these

A

`0`

B

`1`

C

`3`

D

`6`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` `Delta=|{:(1+x,1,1),(1+y,1+2y,1),(1+z,1+z,1+3z):}|=0`
Applying `C_(1)toC_(1)-C_(3)`, `C_(2)toC_(2)-C_(1)` we get
`Delta=|{:(x,0,1),(y,2y,0),(-2z,-2z,1+3z):}|=0`
`:.Delta=|{:(x,0,0),(y,2y,1-(y)/(x)),(-2z,-2z,1+3z+(2z)/(x)):}|=0` (by `C_(2)toC_(3)-(1)/(x)C_(1)`)
`:.x[2y(1+3z+(2z)/(x))+2z(1-(y)/(x))]=0`
`:.[2xy+6zxy+4yz+2zx-2yz]=0`
`:.2(xyz)[(1)/(x)+(1)/(y)+(1)/(z)+3]=0`
`=-((1)/(x)+(1)/(y)+(1)/(z))=3`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

If x!=0,y!=0,z!=0 and |[1+x,1,1],[1+y,1+2y,1],[1+z,1+z,1+3z]|=0 , then x^(-1)+y^(-1)+z^(-1) is equal to a.1 b.-1 c.-3 d. none of these

If x!=y!=z and |x x^2 1+x^3 y y^2 1+y^3 z z^2 1+z^3|=0 , then prove that x y z=-1 .

if x ne 0 , y ne 0 ,z ne 0 " and " |{:(1+x,,1,,1),(1+y,,1+2y,,1),(1+z,,1+z,,1+3z):}|=0 then x^(-1) +y^(-1) +z^(-1) is equal to

Comprehension 1 Let x ,\ y ,\ z in R^+&\ D=|xx^3x^4-1y y^3y^4-1z z^3z^4-1| If x!=y!=z\ &\ x ,\ y ,\ z are in A.P. and D=o,\ t h e n\ 2x^2z+x^2z^2 is equal to a. 1 b. 2 c. 3\ d. none of these

If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a. 1 b. 2 c. -1 d. 2

Comprehension 1 Let x ,\ y ,\ z in R^+&\ D=|xx^3x^4-1y y^3y^4-1z z^3z^4-1| If x!=y!=z\ &\ x ,\ y ,\ z are in GP and D=0,\ t h e n\ y\ is equal to- a. 1 b. 2 c. 4\ d. none of these

If x , y , z are different from zero and |[1+x,1 ,1], [1, 1+y,1], [1, 1, 1+z]|=0 then the value of x^(-1)+y^(-1)+z^(-1) is (a) x y z (b) x^(-1)y^(-1)z^(-1) (c) -x-y-z (d) -1

If x , y , z are different from zero and |[1+x,1, 1],[1 , 1+y ,1],[ 1 ,1, 1+z]|=0 then the value of x^(-1)+y^(-1)+z^(-1) is (a) x y z (b) x^(-1)y^(-1)z^(-1) (c) -x-y-z (d) -1

If x,y,z gt 0 and x + y + z = 1, the prove that (2x)/(1 - x) + (2y)/(1 - y) + (2z)/(1 - z) ge 3 .

If x, y, z are different and Delta=|xx^2 1+x^3y y^2 1+y^3z z^2 1+z^3|=0 , then