Home
Class 12
MATHS
If Y=SX, Z=tX all the variables being di...

If `Y=SX`, `Z=tX` all the variables being differentiable functions of `x` and lower suffices denote the derivative with respect to `x` and `|{:(X,Y,Z),(X_(1),Y_(1),Z_(1)),(X_(2),Y_(2),Z_(2)):}|+|{:(S_(1),t_(1)),(S_(2),t_(2)):}|=X^(n)`, then `n=`

A

`1`

B

`2`

C

`3`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will analyze the determinants and apply the necessary operations to simplify them. ### Step 1: Write the Determinants We start with the determinants given in the problem: \[ \Delta_1 = \begin{vmatrix} X & Y & Z \\ X_1 & Y_1 & Z_1 \\ X_2 & Y_2 & Z_2 \end{vmatrix} \] and \[ \Delta_2 = \begin{vmatrix} S_1 & t_1 \\ S_2 & t_2 \end{vmatrix} \] We need to find the sum of these determinants and set it equal to \(X^n\). ### Step 2: Substitute for Y and Z Given that \(Y = SX\) and \(Z = tX\), we can substitute these into the determinant: \[ \Delta_1 = \begin{vmatrix} X & SX & tX \\ X_1 & S_1X_1 & t_1X_1 \\ X_2 & S_2X_2 & t_2X_2 \end{vmatrix} \] ### Step 3: Factor Out X We can factor out \(X\) from each column: \[ \Delta_1 = X \begin{vmatrix} 1 & S & t \\ X_1 & S_1X_1 & t_1X_1 \\ X_2 & S_2X_2 & t_2X_2 \end{vmatrix} \] ### Step 4: Compute the Derivatives Next, we compute the derivatives: - For \(Y\): \[ Y_1 = S X_1 + S_1 X \] \[ Y_2 = S X_2 + 2 S_1 X_1 + S_2 X \] - For \(Z\): \[ Z_1 = t X_1 + t_1 X \] \[ Z_2 = t X_2 + 2 t_1 X_1 + t_2 X \] ### Step 5: Substitute Derivatives into the Determinant Now we substitute these derivatives back into the determinant: \[ \Delta_1 = \begin{vmatrix} X & SX & tX \\ X_1 & S_1X_1 + S X_1 & t_1X_1 + tX_1 \\ X_2 & S_2X_2 + 2 S_1X_1 & t_2X_2 + 2 t_1X_1 \end{vmatrix} \] ### Step 6: Apply Column Operations We perform column operations: - Column 2: \(C_2 - S C_1\) - Column 3: \(C_3 - t C_1\) This results in: \[ \Delta_1 = X \begin{vmatrix} 1 & 0 & 0 \\ X_1 & S_1X_1 & t_1X_1 \\ X_2 & S_2X_2 & t_2X_2 \end{vmatrix} \] ### Step 7: Simplify the Determinant Now we can simplify the determinant: \[ \Delta_1 = X^2 S_1 T_1 \begin{vmatrix} 1 & 0 \\ X_2 & S_2 \end{vmatrix} \] ### Step 8: Final Determinant Calculation The final determinant simplifies to: \[ \Delta_1 = X^3 S_1 T_1 S_2 T_2 \] ### Step 9: Set Equal to \(X^n\) We know from the problem statement that: \[ \Delta_1 + \Delta_2 = X^n \] Since \(\Delta_2\) is a smaller determinant, we can assume it contributes a lower degree term. Thus, we can equate: \[ X^3 S_1 T_1 S_2 T_2 = X^n \] ### Step 10: Compare Powers From the equation, we see that \(n = 3\). ### Final Answer Thus, the value of \(n\) is: \[ \boxed{3} \]

To solve the given problem step by step, we will analyze the determinants and apply the necessary operations to simplify them. ### Step 1: Write the Determinants We start with the determinants given in the problem: \[ \Delta_1 = \begin{vmatrix} X & Y & Z \\ X_1 & Y_1 & Z_1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

If Y=sX and Z =tX all the varibles beings functions of x then prove that |{:(X,Y,Z),(X_(1),Y_(1),Z_(1)),(X_(2),Y_(2),Z_(2)):}| =X^(3) |{:(s_(1),t_(1)),(s_(2),t_(2)):}| where suffixes denote the order of differention with respect to x.

Prove that : =|{:(1,1,1),(x,y,z),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)

The value of the determinant |{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| is equal to

The value of the determinant |{:(1,x,x^2),(1,y,y^2),(1,z,z^2):}| is equal to

Using properties of determinats prove that : |(x,x(x^(2)+1),x+1),(y,y(y^(2)+1),y+1),(z,z(z^(2)+1),z +1)|=(x-y)(y-z)(z-x)(x+y+z)

STATEMENT-1 : The centroid of a tetrahedron with vertices (0, 0,0), (4, 0, 0), (0, -8, 0), (0, 0, 12)is (1, -2, 3). and STATEMENT-2 : The centroid of a triangle with vertices (x_(1), y_(1), z_(1)), (x_(2), y_(2), z_(2)) and (x_(3), y_(3), z_(3)) is ((x_(1)+x_(2)+x_(3))/3, (y_(1)+y_(2)+y_(3))/3, (z_(1)+z_(2)+z_(3))/3)

If {:[(x-2,y-3),(z+1,t-4)]:}={:[(1,4),(2,3)]:} then find x,y,z and t.

If {:[(x+y,y-z),(z-2x,y-x)]:}={:[(3,-1),(1,1)]:} , then

The value of |{:(x,x^2-yz,1),(y,y^2-zx,1),(z,z^2-xy,1):}| is

Show that the area of the triangle having vertices (0,0,0),(x_1,y_1,z_1),(x_2,y_2,z_2) is 1/2 sqrt((y_1z_2-y_2z_1)^2+(z_2x_1-x_2z_1)^2+(x_1y_2-x_2y_1)^2) .