Home
Class 12
MATHS
Let |A|=|a(ij)|(3xx3) ne0 Each element ...

Let `|A|=|a_(ij)|_(3xx3) ne0` Each element `a_(ij)` is multiplied by by `k^(i-j)` Let `|B|` the resulting determinant, where `k_1 |A|+k_2 |B| =a` then `k_1+k_2 =`

A

`1`

B

`-1`

C

`0`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the transformation of the determinant \( |A| \) when each element \( a_{ij} \) is multiplied by \( k^{i-j} \). Let's go through the steps systematically. ### Step-by-Step Solution: 1. **Understanding the Determinant \( |A| \)**: Given a \( 3 \times 3 \) matrix \( A = [a_{ij}] \), where \( |A| \neq 0 \). 2. **Transforming the Matrix**: Each element \( a_{ij} \) of the matrix \( A \) is multiplied by \( k^{i-j} \). This results in a new matrix \( B \) where: \[ b_{ij} = a_{ij} \cdot k^{i-j} \] Thus, the matrix \( B \) can be expressed as: \[ B = \begin{bmatrix} a_{11} & k^{-1} a_{12} & k^{-2} a_{13} \\ k a_{21} & a_{22} & k^{-1} a_{23} \\ k^2 a_{31} & k a_{32} & a_{33} \end{bmatrix} \] 3. **Calculating the Determinant \( |B| \)**: The determinant \( |B| \) can be calculated using the properties of determinants. Specifically, when we factor out \( k \) from each row: - From the first row, we factor out \( k^0 \) (no factor), - From the second row, we factor out \( k^1 \), - From the third row, we factor out \( k^2 \). Therefore, the determinant \( |B| \) can be expressed as: \[ |B| = k^0 \cdot k^1 \cdot k^2 \cdot |A| = k^3 |A| \] 4. **Setting Up the Equation**: According to the problem, we have: \[ k_1 |A| + k_2 |B| = 0 \] Substituting \( |B| \) from the previous step: \[ k_1 |A| + k_2 (k^3 |A|) = 0 \] 5. **Factoring Out \( |A| \)**: Since \( |A| \neq 0 \), we can divide through by \( |A| \): \[ k_1 + k_2 k^3 = 0 \] 6. **Finding \( k_1 + k_2 \)**: Rearranging gives: \[ k_1 = -k_2 k^3 \] Now, adding \( k_1 + k_2 \): \[ k_1 + k_2 = -k_2 k^3 + k_2 = k_2(1 - k^3) \] 7. **Conclusion**: Since we need to find \( k_1 + k_2 \) in terms of \( k_2 \): If \( k_2 \) is not zero, we can conclude that: \[ k_1 + k_2 = 0 \quad \text{(if } k_2 \text{ is chosen such that } 1 - k^3 = 0\text{)} \] Thus, the final result is: \[ \boxed{0} \]

To solve the problem, we need to analyze the transformation of the determinant \( |A| \) when each element \( a_{ij} \) is multiplied by \( k^{i-j} \). Let's go through the steps systematically. ### Step-by-Step Solution: 1. **Understanding the Determinant \( |A| \)**: Given a \( 3 \times 3 \) matrix \( A = [a_{ij}] \), where \( |A| \neq 0 \). 2. **Transforming the Matrix**: ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

Let A=[a_(ij)]_(mxxn) be a matrix such that a_(ij)=1 for all I,j. Then ,

Let M = [a_(ij)]_(3xx3) where a_(ij) in {-1,1} . Find the maximum possible value of det(M).

Let A=[a_(ij)]_(3xx3) be a scalar matrix and a_(11)+a_(22)+a_(33)=15 then write matrix A.

let A={a_(ij)}_(3xx3) such that a_(ij)={3 , i=j and 0,i!=j . then {det(adj(adjA))/5} equals: (where {.} represents fractional part)

construct 2xx3 matrix whose elements are given by a_(ij) =i+2j

Construct 3xx3 matrix whose elements are given by : a_(ij)=i-j

Construct 3xx3 matrix whose elements are given by : a_(ij) =i+j

If A=[a_(ij)]_(2xx2) where a_(ij)={{:(1",",if, I ne j),(0",", if,i=j):} then A^(2) is equal to

If matrix A=[a_(ij)]_(2x2), where a_(ij)={{:(1"," , i ne j),(0",", i=j):} then A^(3) is equal to

Let A = [a_(ij)], B=[b_(ij)] are two 3 × 3 matrices such that b_(ij) = lambda ^(i+j-2) a_(ij) & |B| = 81 . Find |A| if lambda = 3.