Home
Class 12
MATHS
If alpha, beta. gamma are the roots of x...

If `alpha, beta. gamma` are the roots of `x^3 + px^2 + q = 0,` where `q=0,` ther `Delta=[(1/alpha,1/beta,1/gamma),(1/beta,1/gamma,1/alpha),(1/gamma,1/alpha,1/beta)]` equals (A) `alpha beta gamma` (B) `alpha +beta + gamma ` (C) 0 (D) none of these

A

`alpha beta gamma`

B

`alpha +beta + gamma `

C

`0`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

`(d)` We have `betaalpha+gammaalpha+alphabeta=0`
`Delta=(1)/(alpha^(3)beta^(3)gamma^(3))|{:(betagamma,gammaalpha,alphabeta),(gammaalpha,alphabeta,betagamma),(alphabeta,betagamma,gammaalpha):}|`
`=(1)/(alpha^(3)beta^(3)gamma^(3))|{:(betagamma+gammaalpha+alphabeta,gammaalpha,alphabeta),(gammaalpha+alphabeta+betagamma,alphabeta,betagamma),(alphabeta+betagamma+gammaalpha,betagamma,gammaalpha):}|` [using `C_(1)toC_(1)+C_(2)+C_(3)`]
`=(1)/(alpha^(3)beta^(3)gamma^(3))|{:(0,gammaalpha,alphabeta),(0,alphabeta,betagamma),(0,betagamma,gammaalpha):}|=0` [all zero property].
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is:

If alpha,beta,gamma are the roots of the equation x^3+p x^2+q x+r=0, then find he value of (alpha-1/(betagamma))(beta-1/(gammaalpha))(gamma-1/(alphabeta)) .

If alpha , beta , gamma are the roots of x^3 + qx +r=0 then (1)/( alpha + beta - gamma) +(1)/( beta + gamma - alpha) +(1)/(gamma + alpha - beta) =

If alpha , beta , gamma are the roots of x^3 + qx +r=0 then (1)/( alpha + beta - gamma) +(1)/( beta + gamma - alpha) +(1)/(gamma + alpha - beta) =

If alpha , beta , gamma are the roots of x^3 + 3x^2 -4x +2=0 then the equation whose roots are (1)/( alpha beta) ,(1)/( beta gamma) ,(1)/( gamma alpha) is

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then the value of (1 + alpha^2) (1+ beta^2) (1+ gamma^2) is

If alpha , beta , gamma are the roots of x^3 -3x +1=0 then the equation whose roots are alpha - (1)/( beta gamma) , beta - (1)/( gamma alpha ) , gamma - (1)/( alpha beta ) is

If alpha , beta , gamma are the roots of x^3 + px^2 + qx + r=0 form the equation whose roots are alpha beta , beta gamma , gamma alpha

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to