Home
Class 12
MATHS
If a-2b+c=1, then the value of |{:(x+1,x...

If `a-2b+c=1`, then the value of `|{:(x+1,x+2,x+a),(x+2,x+3,x+b),(x+3,x+4,x+c):}|` is

A

(a)`x`

B

(b)`-x`

C

(c)`-1`

D

(d)`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant, we start with the expression: \[ D = \begin{vmatrix} x + 1 & x + 2 & x + a \\ x + 2 & x + 3 & x + b \\ x + 3 & x + 4 & x + c \end{vmatrix} \] ### Step 1: Apply Row Operations We will perform row operations to simplify the determinant. Let's modify Row 1 by applying the operation \( R_1 \rightarrow R_1 - 2R_2 + R_3 \). \[ R_1 = \begin{pmatrix} x + 1 - 2(x + 2) + (x + 3) & x + 2 - 2(x + 3) + (x + 4) & x + a - 2(x + b) + (x + c) \end{pmatrix} \] Calculating each element: - First element: \[ x + 1 - 2(x + 2) + (x + 3) = x + 1 - 2x - 4 + x + 3 = 0 \] - Second element: \[ x + 2 - 2(x + 3) + (x + 4) = x + 2 - 2x - 6 + x + 4 = 0 \] - Third element: \[ x + a - 2(x + b) + (x + c) = x + a - 2x - 2b + x + c = a - 2b + c \] Thus, Row 1 becomes: \[ R_1 = \begin{pmatrix} 0 & 0 & a - 2b + c \end{pmatrix} \] So the determinant now looks like: \[ D = \begin{vmatrix} 0 & 0 & a - 2b + c \\ x + 2 & x + 3 & x + b \\ x + 3 & x + 4 & x + c \end{vmatrix} \] ### Step 2: Substitute the Given Condition From the problem, we know that \( a - 2b + c = 1 \). Thus, we can substitute this into our determinant: \[ D = \begin{vmatrix} 0 & 0 & 1 \\ x + 2 & x + 3 & x + b \\ x + 3 & x + 4 & x + c \end{vmatrix} \] ### Step 3: Expand the Determinant We can expand the determinant along the first row. Since the first two elements of the first row are zero, we only need to consider the last element: \[ D = 1 \cdot \begin{vmatrix} x + 2 & x + 3 \\ x + 3 & x + 4 \end{vmatrix} \] Calculating this 2x2 determinant: \[ \begin{vmatrix} x + 2 & x + 3 \\ x + 3 & x + 4 \end{vmatrix} = (x + 2)(x + 4) - (x + 3)(x + 3) \] Expanding: \[ = (x^2 + 6x + 8) - (x^2 + 6x + 9) = 8 - 9 = -1 \] ### Final Result Thus, the value of the determinant \( D \) is: \[ D = 1 \cdot (-1) = -1 \] ### Conclusion The value of the determinant is: \[ \boxed{-1} \]

To solve the given determinant, we start with the expression: \[ D = \begin{vmatrix} x + 1 & x + 2 & x + a \\ x + 2 & x + 3 & x + b \\ x + 3 & x + 4 & x + c \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

Choose the correct answer in questions 17 to 19: If a, b, c are in A.P., then the determinant [{:(x+2,x+3,x+2a),(x+3,x+4,x+2b),(x+4,x+5,x+2c):}] is : (a) 0 (b) 1 ( c) x (d) 2x

If a, b, c, are in A.P, then the determinant |(x+2,x+3,x+2a),( x+3,x+4,x+2b ),(x+4,x+5,x+2c)| is (A) 0 (B) 1 (C) x (D) 2x

If a,b,c are in AP show that |[x+1,x+2,x+a],[x+2,x+3,x+b],[x+3,x+4,x+c]|=0

If a ,b ,c are different, then the value of |[0,x^2-a, x^3-b],[ x^2+a,0,x^2+c],[ x^4+b, x-c,0]| is a. c b. a c. b d. 0

When a + b + c = (x)/(2) , then the value of ((x)/(3 ) - 2a) ^(3) + ((x)/(3) - 2b) ^(3) + ((x)/(3) - 2c) ^(3) - 3 ((x)/(3) - 2a) ((x)/(3) - 2b)((x)/(3) - 2c) is

The value of the determinant |(x, x+a, x+2a),(x,x+2a, x+4a),(x, x+3a, x+6a)| is (A) 0 (B) a^3-x^3 (C) x^3-a^3 (D) (x-a)^3

If (x_1-x_2)^2+(y_1-y_2)^2=a^2 , (x_2-x_3)^2+(y_2-y_3)^2=b^2 , (x_3-x_1)^2+(y_3-y_1)^2=c^2 , and 2s=a+b+c then what willl be the value of 1/4|[x_1,y_1, 1],[x_2,y_2, 1],[x_3,y_3, 1]|^2

If x-a is a factor of x^3-3x^2a+2a^2x+b , then the value of b is (a) 0 (b) 2 (c) 1 (d) 3

If a,b,c are in A.P.and f(x)= |(x+a,x^2+1,1),(x+b, 2x^2-1,1),(x+c,3x^2-2 , 1)| , then f'(x) is :

If a, b, c, are in A.P, then the determinant |[x+2,x+3,x+2a], [x+3,x+4,x+2b], [x+4,x+5,x+2c]| is(A) 0 (B) 1 (C) x (D) 2x