Home
Class 12
MATHS
Show that |[""^xCr, ""^x C(r+1),""^x C(r...

Show that `|[""^xC_r, ""^x C_(r+1),""^x C_(r+2)],[""^y C_r,""^y C_(r+1),""^y C_(r+2)],[""^z C_r,""^z C_(r+1),""^z C_(r+2)]|=|[""^(x)C_r, ""^(x+1) C_(r+1),""^(x+2) C_(r+2)],[""^y C_r,""^(y+1) C_(r+1),""^(y+2) C_(r+2)],[""^z C_r,""^(z+1) C_(r+1),""^(z+2) C_(r+2)]|`

A

`0`

B

`2^(n)`

C

`"^(x+y+z)C_(r )`

D

`"^(x+y+z)C_(r +2)`

Text Solution

AI Generated Solution

The correct Answer is:
To show that \[ \begin{vmatrix} {^xC_r} & {^xC_{r+1}} & {^xC_{r+2}} \\ {^yC_r} & {^yC_{r+1}} & {^yC_{r+2}} \\ {^zC_r} & {^zC_{r+1}} & {^zC_{r+2}} \end{vmatrix} = \begin{vmatrix} {^{x}C_r} & {^{x+1}C_{r+1}} & {^{x+2}C_{r+2}} \\ {^{y}C_r} & {^{y+1}C_{r+1}} & {^{y+2}C_{r+2}} \\ {^{z}C_r} & {^{z+1}C_{r+1}} & {^{z+2}C_{r+2}} \end{vmatrix} \] we will start with the left-hand side (LHS) and manipulate it to show that it equals the right-hand side (RHS). ### Step 1: Start with the LHS We begin with the determinant: \[ D_1 = \begin{vmatrix} {^xC_r} & {^xC_{r+1}} & {^xC_{r+2}} \\ {^yC_r} & {^yC_{r+1}} & {^yC_{r+2}} \\ {^zC_r} & {^zC_{r+1}} & {^zC_{r+2}} \end{vmatrix} \] ### Step 2: Perform Column Operations We will add the second column to the third column: \[ D_1 = \begin{vmatrix} {^xC_r} & {^xC_{r+1}} & {^xC_{r+2} + ^xC_{r+1}} \\ {^yC_r} & {^yC_{r+1}} & {^yC_{r+2} + ^yC_{r+1}} \\ {^zC_r} & {^zC_{r+1}} & {^zC_{r+2} + ^zC_{r+1}} \end{vmatrix} \] ### Step 3: Apply the Binomial Coefficient Identity Using the identity \( {^nC_r} + {^nC_{r-1}} = {^{n+1}C_r} \), we can simplify the third column: \[ D_1 = \begin{vmatrix} {^xC_r} & {^xC_{r+1}} & {^{x+1}C_{r+2}} \\ {^yC_r} & {^yC_{r+1}} & {^{y+1}C_{r+2}} \\ {^zC_r} & {^zC_{r+1}} & {^{z+1}C_{r+2}} \end{vmatrix} \] ### Step 4: Perform Another Column Operation Now we will add the first column to the second column: \[ D_1 = \begin{vmatrix} {^xC_r} & {^{x+1}C_{r+1}} & {^{x+1}C_{r+2}} \\ {^yC_r} & {^{y+1}C_{r+1}} & {^{y+1}C_{r+2}} \\ {^zC_r} & {^{z+1}C_{r+1}} & {^{z+1}C_{r+2}} \end{vmatrix} \] ### Step 5: Apply the Binomial Coefficient Identity Again Using the same identity again, we can simplify the second column: \[ D_1 = \begin{vmatrix} {^xC_r} & {^{x+1}C_{r+1}} & {^{x+2}C_{r+2}} \\ {^yC_r} & {^{y+1}C_{r+1}} & {^{y+2}C_{r+2}} \\ {^zC_r} & {^{z+1}C_{r+1}} & {^{z+2}C_{r+2}} \end{vmatrix} \] ### Step 6: Conclusion Now we have transformed the LHS into the form of the RHS: \[ D_1 = \begin{vmatrix} {^{x}C_r} & {^{x+1}C_{r+1}} & {^{x+2}C_{r+2}} \\ {^{y}C_r} & {^{y+1}C_{r+1}} & {^{y+2}C_{r+2}} \\ {^{z}C_r} & {^{z+1}C_{r+1}} & {^{z+2}C_{r+2}} \end{vmatrix} \] Thus, we have shown that: \[ \begin{vmatrix} {^xC_r} & {^xC_{r+1}} & {^xC_{r+2}} \\ {^yC_r} & {^yC_{r+1}} & {^yC_{r+2}} \\ {^zC_r} & {^zC_{r+1}} & {^zC_{r+2}} \end{vmatrix} = \begin{vmatrix} {^{x}C_r} & {^{x+1}C_{r+1}} & {^{x+2}C_{r+2}} \\ {^{y}C_r} & {^{y+1}C_{r+1}} & {^{y+2}C_{r+2}} \\ {^{z}C_r} & {^{z+1}C_{r+1}} & {^{z+2}C_{r+2}} \end{vmatrix} \]

To show that \[ \begin{vmatrix} {^xC_r} & {^xC_{r+1}} & {^xC_{r+2}} \\ {^yC_r} & {^yC_{r+1}} & {^yC_{r+2}} \\ {^zC_r} & {^zC_{r+1}} & {^zC_{r+2}} \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

For ""^(n) C_(r) + 2 ""^(n) C_(r-1) + ""^(n) C_(r-2) =

Show that |^x C_r^x C_(r+1)^x C_(r+2)^y C_r^y C_(r+1)^y C_(r+2)^z C_r^z C_(r+1)^z C_(r+1)|=|^x C_r^(x+1)C_(r+1)^(x+2)C_(r+2)^y C_r^(y+1)C_(r+1)^(y+2)C_(r+2)^z C_r^(z+1)C_(r+1)^(z+2)C_(r+1)| .

|{:(.^(x)C_(r),,.^(x)C_(r+1),,.^(x)C_(r+2)),(.^(y)C_(r),,.^(y)C_(r+1),,.^(y)C_(r+2)),(.^(z)C_(r),,.^(z)C_(r+1),,.^(z)C_(r+2)):}| is equal to

""^(n-2)C_(r)+2""^(n-2)C_(r-1)+""^(n-2)C_(r-2) equals :

""^(n)C_(n-r)+3.""^(n)C_(n-r+1)+3.""^(n)C_(n-r+2)+""^(n)C_(n-r+3)=""^(x)C_(r)

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

""^(n)C_(r)+2""^(n)C_(r-1)+^(n)C_(r-2) is equal to