Home
Class 12
MATHS
If |{:(.^(9)C(4),.^(9)C(5),.^(10)C(r)),(...

If `|{:(.^(9)C_(4),.^(9)C_(5),.^(10)C_(r)),(.^(10)C_(6 ),.^(10)C_(7),.^(11)C_(r+2)),(.^(11)C_(8),.^(11)C_(9),.^(12)C_(r+4)):}|=0` , then the value of `r` is equal to

A

`3`

B

`4`

C

`5`

D

`6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation given by \[ \begin{vmatrix} {9C_4} & {9C_5} & {10C_r} \\ {10C_6} & {10C_7} & {11C_{r+2}} \\ {11C_8} & {11C_9} & {12C_{r+4}} \end{vmatrix} = 0, \] we will follow these steps: ### Step 1: Write down the determinant We start with the determinant as given: \[ D = \begin{vmatrix} {9C_4} & {9C_5} & {10C_r} \\ {10C_6} & {10C_7} & {11C_{r+2}} \\ {11C_8} & {11C_9} & {12C_{r+4}} \end{vmatrix} \] ### Step 2: Apply the column operation We can simplify the determinant by applying the column operation \(C_2 \rightarrow C_2 + C_3\): \[ D = \begin{vmatrix} {9C_4} & {9C_5 + 10C_r} & {10C_r} \\ {10C_6} & {10C_7 + 11C_{r+2}} & {11C_{r+2}} \\ {11C_8} & {11C_9 + 12C_{r+4}} & {12C_{r+4}} \end{vmatrix} \] ### Step 3: Analyze the determinant For the determinant to equal zero, at least two columns must be linearly dependent. This can happen if: \[ 9C_5 + 10C_r = 10C_r \quad \text{(1st and 2nd column)} \] or \[ 10C_7 + 11C_{r+2} = 11C_{r+2} \quad \text{(2nd and 3rd column)} \] or \[ 11C_9 + 12C_{r+4} = 12C_{r+4} \quad \text{(3rd and 4th column)} \] ### Step 4: Set up the equation From the first column operation, we have: \[ 9C_5 = 10C_r - 10C_r \implies 9C_5 = 0 \implies C_r = C_{r+2} = C_{r+4} \] ### Step 5: Solve for \(r\) We can analyze the values of \(r\) based on the properties of combinations. The values of \(C\) can be equal if: - \(r = 5\) - \(r + 2 = 5\) or \(r + 4 = 5\) Thus, we can conclude that: \[ r = 5 \] ### Conclusion The value of \(r\) that satisfies the determinant condition is: \[ \boxed{5} \]

To solve the determinant equation given by \[ \begin{vmatrix} {9C_4} & {9C_5} & {10C_r} \\ {10C_6} & {10C_7} & {11C_{r+2}} \\ {11C_8} & {11C_9} & {12C_{r+4}} \end{vmatrix} = 0, ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

|{:(.^(x)C_(r),,.^(x)C_(r+1),,.^(x)C_(r+2)),(.^(y)C_(r),,.^(y)C_(r+1),,.^(y)C_(r+2)),(.^(z)C_(r),,.^(z)C_(r+1),,.^(z)C_(r+2)):}| is equal to

The value of |(.^(10)C_(4).^(10)C_(5).^(11)C_(m)),(.^(11)C_(6).^(11)C_(7).^(12)C_(m+2)),(.^(12)C_(8).^(12)C_(9).^(13)C_(m+4))| is equal to zero when m is

the roots of the equations |{:(.^(x)C_(r),,.^(n-1)C_(r),,.^(n)C_(r)),(.^(x+1)C_(r),,.^(n)C_(r),,.^(n+1)C_(r)),(.^(x+2)C_(r),,.^(n+1)C_(r),,.^(n+2)C_(r)):}|=0

If .^(15)C_(r): .^(15)C_(R-1) = 11:5 , then find the value of 'r'.

If ^15 C_(3r):^(15)C_(r+1)=11 :3 , find the value of rdot

If ^15 C_(3r):^(15)C_(r+1)=11 :3 , find the value of rdot

If .^(n+1)C_(r+1):^(n)C_(r):^(n-1)C_(r-1)=11:6:3 , find the values of n and r.

If .^(n)C_(r-1): .^(n)C_(r): .^(n)C_(r+1)=3:4:5 , find the values of n and r.

The value of .^(13)C_(7)+.^(13)C_(8)+.^(13)C_(9)+.^(13)C_(10)+.^(13)C_(11)+.^(13)C_(12)+.^(13)C_(13) is equal to

Find the value of (.^(10)C_(10))+(.^(10)C_(0)+.^(10)C_(1))+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2))+"...."+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2)+"....." + .^(10)C_(9)) .