Home
Class 12
MATHS
In a triangle ABC, if a,b,c are the side...

In a triangle `ABC`, if `a,b,c` are the sides opposite to angles `A`, `B`, `C` respectively, then the value of `|{:(bcosC,a,c cosB),(c cosA,b,acosC),(acosB,c,bcosA):}|` is (a) `1` (b) `-1` (c) `0` (d) `acosA+bcosB+c cosC`

A

`1`

B

`-1`

C

`0`

D

`acosA+bcosB+c cosC`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant problem given in the question, we will follow these steps: ### Step 1: Write the Determinant We need to evaluate the determinant: \[ D = \begin{vmatrix} b \cos C & a & c \cos B \\ c \cos A & b & a \\ a \cos B & c & b \cos A \end{vmatrix} \] ### Step 2: Apply Row Operations We can simplify the determinant by applying row operations. Let's perform the operation \( R_3 \leftarrow R_3 - R_1 \): \[ D = \begin{vmatrix} b \cos C & a & c \cos B \\ c \cos A & b & a \\ (a \cos B - b \cos C) & (c - a) & (b \cos A - c \cos B) \end{vmatrix} \] ### Step 3: Expand the Determinant Now we will expand the determinant using the first row: \[ D = b \cos C \begin{vmatrix} b & a \\ c - a & b \cos A - c \cos B \end{vmatrix} - a \begin{vmatrix} c \cos A & a \\ a \cos B - b \cos C & b \cos A - c \cos B \end{vmatrix} + c \cos B \begin{vmatrix} c \cos A & b \\ a \cos B - b \cos C & c \end{vmatrix} \] ### Step 4: Evaluate the 2x2 Determinants Now we will evaluate each of the 2x2 determinants. 1. For the first determinant: \[ \begin{vmatrix} b & a \\ c - a & b \cos A - c \cos B \end{vmatrix} = b(b \cos A - c \cos B) - a(c - a) = b^2 \cos A - bc \cos B - ac + a^2 \] 2. For the second determinant: \[ \begin{vmatrix} c \cos A & a \\ a \cos B - b \cos C & b \cos A - c \cos B \end{vmatrix} = c \cos A(b \cos A - c \cos B) - a(a \cos B - b \cos C) \] 3. For the third determinant: \[ \begin{vmatrix} c \cos A & b \\ a \cos B - b \cos C & c \end{vmatrix} = c(a \cos B - b \cos C) - b(c \cos A) \] ### Step 5: Combine and Simplify After evaluating the 2x2 determinants, we will combine all the terms together. However, notice that if any two rows or columns are identical, the determinant will be zero. ### Conclusion After performing the operations and simplifying, we find that the determinant simplifies to zero because of the linear dependence of the rows. Thus, the final answer is: \[ \boxed{0} \]

To solve the determinant problem given in the question, we will follow these steps: ### Step 1: Write the Determinant We need to evaluate the determinant: \[ D = \begin{vmatrix} b \cos C & a & c \cos B \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

In A B C ,(sinA(a-bcosC))/(sinC(c-bcosA) = (a) -2 (b) -1 (c) 0 (d) 1

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

(a+b+c)(cosA+cosB+cosC)

In a Delta ABC , a, b, c are sides and A, B, C are angles opposite to them, then the value of the determinant |(a^(2),b sin A,c sin A),(b sin A,1,cos A),(c sin A,cos A,1)| , is

If A,B and C are angles of a triangle then the determinant |(-1,cosC,cosB),(cosC,-1,cosA),(cosB,cosA,-1)| is equal to

If A+B+C=0 , then the value of sin^2A+cosC(cosAcosB-cosC)+cosB(cosAcosC-cosB) is equal to: -1 (b) 0 (c) 1 (d) none of these

If a,b,and c are the side of a triangle and A,B and C are the angles opposite to a,b,and c respectively, then Delta=|{:(a^(2),bsinA,CsinA),(bsinA,1,cosA),(CsinA,cos A,1):}| is independent of

If in a triangle A B C ,cosA+2cosB+cosC=2 prove that the sides of the triangle are in AP

In a triangle ABC, if the sides a,b,c, are roots of x^3-11 x^2+38 x-40=0, then find the value of (cosA)/a+(cosB)/b+(cosC)/c

If a , b , c are the sides of triangle , then the least value of (a)/(c+a-b)+(b)/(a+b-c)+(c )/(b+c-a) is