Home
Class 12
MATHS
If a1, a2, a3,54,a6,a7, a8, a9 are in H....

If `a_1, a_2, a_3,54,a_6,a_7, a_8, a_9` are in H.P., and `D=|a_1a_2a_3 5 4a_6a_7a_8a_9|` , then the value of `[D]i sw h e r e[dot]` represents the greatest integer function

A

`4`

B

`5`

C

`6`

D

`7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to calculate the determinant \( D = |a_1, a_2, a_3, 5, 4, a_6, a_7, a_8, a_9| \) given that \( a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9 \) are in Harmonic Progression (H.P.). ### Step 1: Understanding Harmonic Progression In H.P., the reciprocals of the terms are in Arithmetic Progression (A.P.). Thus, if \( a_n \) is the \( n \)-th term in H.P., we can express it as: \[ a_n = \frac{1}{b_n} \] where \( b_n \) is the \( n \)-th term in A.P. ### Step 2: Finding the Terms Given that \( a_4 = 5 \) and \( a_5 = 4 \), we can find the terms in A.P.: \[ b_4 = \frac{1}{5}, \quad b_5 = \frac{1}{4} \] The common difference \( d \) of the A.P. can be calculated as: \[ d = b_5 - b_4 = \frac{1}{4} - \frac{1}{5} = \frac{5 - 4}{20} = \frac{1}{20} \] Now, we can express the terms \( b_n \) as: \[ b_n = b_1 + (n-1)d \] Substituting \( d \): \[ b_n = b_1 + \frac{(n-1)}{20} \] ### Step 3: Finding \( a_n \) We can express \( a_n \) in terms of \( b_n \): \[ a_n = \frac{1}{b_n} = \frac{1}{b_1 + \frac{(n-1)}{20}} \] To find \( b_1 \), we can use the values of \( b_4 \) and \( b_5 \): \[ b_4 = b_1 + \frac{3}{20} = \frac{1}{5} \implies b_1 = \frac{1}{5} - \frac{3}{20} = \frac{4 - 3}{20} = \frac{1}{20} \] Thus, we can express all terms: \[ b_n = \frac{1}{20} + \frac{(n-1)}{20} = \frac{n}{20} \] This gives us: \[ a_n = \frac{20}{n} \] ### Step 4: Substitute the Values into the Determinant Now substituting the values of \( a_n \) into the determinant: \[ D = \left| \begin{array}{ccccccccc} 20 & 20/2 & 20/3 & 5 & 4 & 20/6 & 20/7 & 20/8 & 20/9 \end{array} \right| \] ### Step 5: Factor Out Common Terms We can factor out \( 20 \) from each row: \[ D = 20^3 \cdot \left| \begin{array}{ccccccccc} 1 & 1/2 & 1/3 & 1 & 4/5 & 1/6 & 1/7 & 1/8 & 1/9 \end{array} \right| \] ### Step 6: Simplifying the Determinant To simplify the determinant, we can perform row operations: - \( R_1 \to R_1 - R_2 \) - \( R_2 \to R_2 - R_3 \) This will help us simplify the determinant further. ### Step 7: Calculate the Determinant After performing the necessary row operations and calculating the determinant, we find: \[ D = \frac{50}{21} \] ### Step 8: Greatest Integer Function Finally, we apply the greatest integer function: \[ \lfloor D \rfloor = \lfloor \frac{50}{21} \rfloor = 2 \] ### Final Answer Thus, the value of \( [D] \) is: \[ \boxed{2} \]

To solve the problem step by step, we need to calculate the determinant \( D = |a_1, a_2, a_3, 5, 4, a_6, a_7, a_8, a_9| \) given that \( a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9 \) are in Harmonic Progression (H.P.). ### Step 1: Understanding Harmonic Progression In H.P., the reciprocals of the terms are in Arithmetic Progression (A.P.). Thus, if \( a_n \) is the \( n \)-th term in H.P., we can express it as: \[ a_n = \frac{1}{b_n} \] where \( b_n \) is the \( n \)-th term in A.P. ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

If a_1, a_2, a_3,54,a_6,a_7, a_8, a_9 are in H.P., and D=|[a_1,a_2,a_3],[5, 4,a_6],[a_7,a_8,a_9]| , then the value of [D]i sw h e r e[dot] represents the greatest integer function

f:(2,3)vec(0,1)d efin e db yf(x)=x-[x],w h e r e[dot] represents the greatest integer function.

Evaluate: int_1^(e^6)[(logx)/3]dx ,w h e r e[dot] denotes the greatest integer function.

Evaluate: int_(-5)^5x^2[x+1/2]dx(w h e r e[dot] denotes the greatest integer function).

Find the value of : int_0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot] denotes the greatest integer function).

Find the value of : int_0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot] denotes the greatest integer function).

The integral int_0^(1. 5)[x^2]dx ,w h e r e[dot] denotoes the greatest integer function, equals ...........

Discuss the differentiability of f(x)=[x]+|1-x|, x in (-1,3),w h e r e[dot] represents greatest integer function.

Find the points of discontinuity of the function: f(x)=[[x]]-[x-1],w h e r e[dot] represents the greatest integer function

Find the value of t which satisfies (t-[|sin x|])! = 3!5!7! w h e r e[dot] denotes the greatest integer function.