Home
Class 12
MATHS
|[1/c,1/c,-(a+b)/c^2],[-(b+c)/a^2,1/a,1/...

`|[1/c,1/c,-(a+b)/c^2],[-(b+c)/a^2,1/a,1/a],[(-b(b+c))/(a^2c),(a+2b+c)/(ac),(-b(a+b))/(ac^2)]|` is

A

(a) dependent on `a,b,c`

B

(b) dependent on `a`

C

(c) dependent on `b`

D

(d) independent on `a,b` and `c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant \[ D = \begin{vmatrix} \frac{1}{c} & \frac{1}{c} & -\frac{(a+b)}{c^2} \\ -\frac{(b+c)}{a^2} & \frac{1}{a} & \frac{1}{a} \\ -\frac{b(b+c)}{(a^2c)} & \frac{(a+2b+c)}{(ac)} & -\frac{b(a+b)}{(ac^2)} \end{vmatrix} \] we will simplify it step by step. ### Step 1: Multiply Columns by Constants We will multiply the first column by \( A \), the second column by \( B \), and the third column by \( C \). This gives us: \[ D = \frac{1}{ABC} \begin{vmatrix} \frac{A}{c} & \frac{B}{c} & -\frac{(a+b)C}{c^2} \\ -\frac{(b+c)A}{a^2} & \frac{B}{a} & \frac{B}{a} \\ -\frac{b(b+c)A}{(a^2c)} & \frac{(a+2b+c)B}{(ac)} & -\frac{b(a+b)C}{(ac^2)} \end{vmatrix} \] ### Step 2: Simplify the Determinant Now we can simplify the determinant. The first column becomes: \[ \begin{vmatrix} \frac{A}{c} & \frac{B}{c} & -\frac{(a+b)C}{c^2} \\ -\frac{(b+c)A}{a^2} & \frac{B}{a} & \frac{B}{a} \\ -\frac{b(b+c)A}{(a^2c)} & \frac{(a+2b+c)B}{(ac)} & -\frac{b(a+b)C}{(ac^2)} \end{vmatrix} \] ### Step 3: Perform Column Operations Next, we will perform column operations. We can replace column 1 with the sum of columns 1, 2, and 3: \[ C_1 \rightarrow C_1 + C_2 + C_3 \] This gives us: \[ D = \frac{1}{ABC} \begin{vmatrix} 0 & \frac{B}{c} & -\frac{(a+b)C}{c^2} \\ 0 & \frac{B}{a} & \frac{B}{a} \\ 0 & \frac{(a+2b+c)B}{(ac)} & -\frac{b(a+b)C}{(ac^2)} \end{vmatrix} \] ### Step 4: Evaluate the Determinant Since the first column is now all zeros, the determinant evaluates to zero: \[ D = 0 \] ### Conclusion Thus, the determinant is independent of \( A \), \( B \), and \( C \). ### Final Answer The value of the determinant is: \[ \boxed{0} \]

To solve the given determinant \[ D = \begin{vmatrix} \frac{1}{c} & \frac{1}{c} & -\frac{(a+b)}{c^2} \\ -\frac{(b+c)}{a^2} & \frac{1}{a} & \frac{1}{a} \\ -\frac{b(b+c)}{(a^2c)} & \frac{(a+2b+c)}{(ac)} & -\frac{b(a+b)}{(ac^2)} \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

If a ,b ,a n dc are in H.P., then th value of ((a c+a b-b c)(a b+b c-a c))/((a b c)^2) is ((a+c)(3a-c))/(4a^2c^2) b. 2/(b c)-1/(b^2) c. 2/(b c)-1/(a^2) d. ((a-c)(3a+c))/(4a^2c^2)

Prove: |((b+c)^2, a^2, b c) ,((c+a)^2, b^2 ,c a),( (a+b)^2, c^2, a b)|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2) .

Prove that: |[b, c-a^2,c] ,[a-b^2,a b-c^2,c ],[a-b^2,a ,b-c^2b c-a^2a b-c^2b c-a^2c a-b^2]|=|[a, b, c],[ b ,c ,a],[ c, a ,b]|^2 .

The area of triangle formed by the vertices (a, 1/a), (b, 1/b), (c, 1/c) is (a) |((a+b)(b+c)(c+a))/(2abc)| (b) |((a-b)(b-c)(c-a))/(2abc)| (c) |((a-(1)/(a))(b-(1)/(b))(c-(1)/(c )))/(2)| (d) |((a-1)(b-1)(c-1))/(2abc)|

Show that |[1,a,a^2],[1,b,b^2],[1,c,c^2]|=(a-b)(b-c)(c-a)

Prove: |[1,a^2+bc, a^3],[ 1,b^2+c a, b^3],[ 1,c^2+a b, c^3]|=-(a-b)(b-c)(c-a)(a^2+b^2+c^2)

If (1)/(a)+(1)/(c )=(1)/(2b-a)+(1)/(2b-c) , then

prove that |{:((b+c)^(2),,bc,,ac),(ba,,(c+a)^(2),,cb),(ca,,cb,,(a+b)^(2)):}| |{:((b+c)^(2),,a^(2),,a^(2)),(b^(2),,(c+a)^(2),,b^(2)),(c^(2),,c^(2),,(a+b)^(2)):}| =2abc (a+b+c)^(3)

Prove: |(1,b+c ,b^2+c^2),( 1,c+a ,c^2+a^2),( 1,a+b ,a^2+b^2)|=(a-b)(b-c)(c-a)

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to