To solve the problem step by step, we need to find the value of the determinant given the areas of two triangles formed by specific vertices.
### Step 1: Understand the Area of a Triangle
The area of a triangle with vertices at \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\) can be calculated using the formula:
\[
\text{Area} = \frac{1}{2} \left| \begin{vmatrix}
1 & 1 & 1 \\
x_1 & x_2 & x_3 \\
y_1 & y_2 & y_3
\end{vmatrix} \right|
\]
### Step 2: Area of the First Triangle
For the first triangle with vertices \((a, a^2)\), \((b, b^2)\), and \((c, c^2)\), we have:
\[
\text{Area} = \frac{1}{2} \left| \begin{vmatrix}
1 & 1 & 1 \\
a & b & c \\
a^2 & b^2 & c^2
\end{vmatrix} \right| = \frac{1}{2}
\]
This implies:
\[
\left| \begin{vmatrix}
1 & 1 & 1 \\
a & b & c \\
a^2 & b^2 & c^2
\end{vmatrix} \right| = 1
\]
### Step 3: Area of the Second Triangle
For the second triangle with vertices \((p, p^2)\), \((q, q^2)\), and \((r, r^2)\), we have:
\[
\text{Area} = \frac{1}{2} \left| \begin{vmatrix}
1 & 1 & 1 \\
p & q & r \\
p^2 & q^2 & r^2
\end{vmatrix} \right| = 4
\]
This implies:
\[
\left| \begin{vmatrix}
1 & 1 & 1 \\
p & q & r \\
p^2 & q^2 & r^2
\end{vmatrix} \right| = 8
\]
### Step 4: Set Up the Determinant
We need to evaluate the determinant:
\[
D = \left| \begin{matrix}
(1 + ap)^2 & (1 + bp)^2 & (1 + cp)^2 \\
(1 + aq)^2 & (1 + bq)^2 & (1 + cq)^2 \\
(1 + ar)^2 & (1 + br)^2 & (1 + cr)^2
\end{matrix} \right|
\]
### Step 5: Expand the Determinant
Each term in the determinant can be rewritten using the identity \((x + y)^2 = x^2 + 2xy + y^2\):
\[
D = \left| \begin{matrix}
1 + 2ap + a^2p^2 & 1 + 2bp + b^2p^2 & 1 + 2cp + c^2p^2 \\
1 + 2aq + a^2q^2 & 1 + 2bq + b^2q^2 & 1 + 2cq + c^2q^2 \\
1 + 2ar + a^2r^2 & 1 + 2br + b^2r^2 & 1 + 2cr + c^2r^2
\end{matrix} \right|
\]
### Step 6: Factor Out Common Terms
We can factor out 2 from each of the first rows:
\[
D = 2^3 \left| \begin{matrix}
1 & 1 & 1 \\
a & b & c \\
a^2 & b^2 & c^2
\end{matrix} \right| \left| \begin{matrix}
1 & 1 & 1 \\
p & q & r \\
p^2 & q^2 & r^2
\end{matrix} \right|
\]
This gives us:
\[
D = 8 \cdot 1 \cdot 8 = 64
\]
### Step 7: Final Calculation
Since we factored out \(2^3\) (which is 8), we have:
\[
D = 8 \cdot 8 = 64
\]
### Conclusion
The value of the determinant is \(16\).