Home
Class 12
MATHS
Prove that |{:(betagamma,betagamma'+beta...

Prove that `|{:(betagamma,betagamma'+beta'gamma,beta'gamma'),(gammaalpha,gammaalpha'+gamma'alpha,gamma'alpha'),(alphabeta,alphabeta'+alpha'beta,alpha'beta'):}|`
`=(alphabeta'-alpha'beta)(betagamma'-beta'gamma)(gammaalpha'-gamma'alpha)`.

A

`(alphabeta'-alpha'beta)(betagamma'-beta'gamma)(gammaalpha'-gamma'alpha)`

B

`(alphaalpha'-betabeta')(betabeta'-gammagamma')(gammagamma'-alphaalpha')`

C

`(alphabeta'+alpha'beta)(betagamma'+beta'gamma)(gammaalpha'+gamma'alpha)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` `(1)/(alphabetagamma)|{:(alphabetagamma,alphabetagamma'+alphabeta'gamma,alphabeta'gamma'),(alphabetaalpha,betagammaalpha'+betagamma'alpha,betagamma'alpha'),(alphabetagamma,alphabeta'gamma+alpha'betagamma,alpha'beta'gamma):}|`
Multiplying `R_(1)` by `alpha`, `R_(2)` by `beta` and `R_(3)` by `gamma` and dividing the determinant by `alphabetagamma` we have
`=(1)/(alphabetagamma)*alphabetagamma|{:(1,alphabetagamma'+alphabeta'gamma,alphabeta'gamma'),(1,betagammaalpha'+betaalphagamma',betagamma'alpha'),(1,gammaalphabeta'+gammaalpha'beta,gammaalpha'beta'):}|`
by `{:(R_(3)toR_(3)-R_(1)),(R_(2)toR_(2)-R_(1)):}`
`=|{:(1,alphabetagamma'+alphabeta'gamma,alphabeta'gamma'),(0,gamma(alpha'beta-alphabeta'),gamma'(alpha'beta-alphabeta')),(0,beta(alpha'gamma-alphagamma'),beta'(alpha'gamma-alphagamma')):}|`
`=(alpha'beta-alphabeta')(alpha'gamma-alphagamma')|{:(1,alphabetagamma',+,alphabeta'gamma,alphabeta'gamma'),(0,,gamma,,gamma'),(0,,beta,,beta'):}|`
`=(alpha'beta-alphabeta')(alpha'gamma-alphagamma')(gammabeta'-betagamma')`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

The value of |{:(betagamma,betagamma'+beta'gamma,beta'gamma'),(gammaalpha,gammaalpha'+gamma'alpha,gamma'alpha'),(alphabeta,alphabeta'+alpha'beta,alpha'beta'):}| is

Prove that: |[alpha,beta,gamma],[alpha^2,beta^2,gamma^2],[beta+gamma,gamma+alpha,alpha+beta]|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma) .

Prove that |2alpha+beta+gamma+deltaalphabeta+gammadelta alpha+beta+gamma+delta2(alpha+beta)(gamma+delta)alphabeta(gamma+delta)+gammadelta(alpha+beta) alphabeta+gammadeltaalphabeta(gamma+delta)+gammadelta(alpha+beta)2alphabetagammadelta|=0

Prove that |2alpha+beta+gamma+deltaalphabeta+gammadeltaalpha+beta+gamma+delta2(alpha+beta)(gamma+delta)alphabeta(gamma+delta)+gammadelta(alpha+beta)alphabeta+gammadeltaalphabeta(gamma+delta)+gammadelta(alpha+beta)2alphabetagammadelta|=0

Prove that |((beta+gamma-alpha-delta)^4,(beta+gamma-alpha-delta)^2,1),((gamma+alpha-beta-delta)^4,(gamma+alpha-beta-delta)^2,1),((alpha+beta-gamma-delta)^4,(alpha+beta-gamma-delta)^2,1)|=-64(alpha-beta)(alpha-gamma)(alpha-delta)(beta-delta)(gamma-delta)

cos alphasin(beta-gamma)+cosbetasin(gamma-alpha)+cos gammasin(alpha-beta)=

Using properties of determinants. Prove that |(alpha,alpha^2,beta+gamma),(beta,beta^2,gamma+alpha),(gamma,gamma^2,alpha+beta)|=(beta-gamma)(gamma-alpha)(alpha-beta)(alpha+beta+gamma)

If alpha + beta = 90^@ and beta + gamma = alpha then tanalpha-tanbeta=?

If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|=

Evaluate the following: |[1,1,1],[alpha, beta, gamma],[beta gamma, gamma alpha, alpha beta]|