Home
Class 12
MATHS
If |{:(a,b,a),(b,c,1),(c,a,1):}|=2010 an...

If `|{:(a,b,a),(b,c,1),(c,a,1):}|=2010` and if `|{:(c-a,c-b,ab),(a-b,a-c,bc),(b-c,b-a,ca):}|-|{:(c-a,c-b,c^(2)),(a-b,a-c,a^(2)),(b-c,b-a,b^(2)):}|=p`, then the number of positive divisors of `p` is

A

(a) `36`

B

(b) `49`

C

(c) `64`

D

(d) `81`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate two determinants and find the difference between them. Let's break it down step by step. ### Step 1: Evaluate the first determinant We have the determinant: \[ D_1 = \begin{vmatrix} a & b & a \\ b & c & 1 \\ c & a & 1 \end{vmatrix} \] Using the determinant formula for a 3x3 matrix, we can expand this determinant: \[ D_1 = a \begin{vmatrix} c & 1 \\ a & 1 \end{vmatrix} - b \begin{vmatrix} b & 1 \\ c & 1 \end{vmatrix} + a \begin{vmatrix} b & c \\ c & a \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} c & 1 \\ a & 1 \end{vmatrix} = c - a\) 2. \(\begin{vmatrix} b & 1 \\ c & 1 \end{vmatrix} = b - c\) 3. \(\begin{vmatrix} b & c \\ c & a \end{vmatrix} = ab - c^2\) Substituting these back into \(D_1\): \[ D_1 = a(c - a) - b(b - c) + a(ab - c^2) \] \[ = ac - a^2 - b^2 + bc + a^2b - ac^2 \] \[ = a^2b - ac^2 - b^2 + bc \] ### Step 2: Evaluate the second determinant Now we evaluate: \[ D_2 = \begin{vmatrix} c-a & c-b & ab \\ a-b & a-c & bc \\ b-c & b-a & ca \end{vmatrix} \] Using similar expansion techniques: \[ D_2 = (c-a) \begin{vmatrix} a-c & bc \\ b-a & ca \end{vmatrix} - (c-b) \begin{vmatrix} a-b & bc \\ b-c & ca \end{vmatrix} + ab \begin{vmatrix} a-b & a-c \\ b-c & b-a \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} a-c & bc \\ b-a & ca \end{vmatrix} = (a-c)ca - (b-a)bc\) 2. \(\begin{vmatrix} a-b & bc \\ b-c & ca \end{vmatrix} = (a-b)ca - (b-c)bc\) 3. \(\begin{vmatrix} a-b & a-c \\ b-c & b-a \end{vmatrix} = (a-b)(b-a) - (a-c)(b-c)\) ### Step 3: Calculate the difference Now we need to find \(D_2 - D_1\) and set it equal to \(p\): \[ p = D_2 - D_1 \] ### Step 4: Set the equation From the problem, we know: \[ |D_1| = 2010 \] Thus, we can substitute this value into our equation to find \(p\). ### Step 5: Find the number of positive divisors of \(p\) To find the number of positive divisors of \(p\), we need to factor \(p\) into its prime factors and use the formula for counting divisors.

To solve the given problem, we need to evaluate two determinants and find the difference between them. Let's break it down step by step. ### Step 1: Evaluate the first determinant We have the determinant: \[ D_1 = \begin{vmatrix} a & b & a \\ b & c & 1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

Prove that |{:(b+c, c+a, a+b),(c+a, a+b,b+c),(a+b, b+c, c+a):}| =2(a+b+c)(ab+bc+ca-a^(2)-b^(2)-c^(2)).

|[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]|=|[a,b,c],[b,c,a],[c,a,b]|^2

Prove: |(a+b,b+c,c+a),( b+c,c+a, a+b),( c+a, a+b,b+c)|=2|(a, b, c),( b, c, a),( c, a, b)|

Prove that : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=(a-b)(b-c)(c-a)(ab+bc+ca)

Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and A and B are two matrices given by A=[(a,b,c),(b,c,a),(c,a,b)] and B=[(bc-a^(2),ca-b^(2),ab-c^(2)),(ca-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ca-b^(2))] , then the value |A||B| is equal to

Prove that |{:(a,b,c),(a^(2),b^(2),c^(2)),(b+c,c+a,a+b):}|=(a-b)(b-c)(c-a)(a+b+c)

" if " |{:(1,,1,,1),(a,,b,,c),(bc,,ca,,ab):}|=|{:(1,,1,,1),(a,,b,,c),(a^(3),,b^(3),,c^(3)):}| where a,b,c are distinct positive reals then the possible values of abc is // are

Prove that: |{:(-2a,, a+b,, a+c), (b+a,,-2b,,b+c),(c+a ,,c+b,,-2c):}|=4(a+b)(b+c)(c+a)

|(bc,bc'+b'c,b'c'),(ca,ca'+c'a,c'a'),(ab,ab'+a'b,a'b')| is equal to

Prove that Delta = |{:(1,,1,,1),(a,,b,,c),(bc+a^(2),,ac+b^(2),,ab+c^(2)):}| = 2(a-b)(b-c)(c-a)