Home
Class 12
MATHS
Let |(a,l,m),(l,b,n),(m,n,c)||(bc-n^2,mn...

Let `|(a,l,m),(l,b,n),(m,n,c)||(bc-n^2,mn-lc,ln-bm),(mn-lc,ac-m^2,ml-an),(ln-bm,lm-an,ab-l^2)|=64.` If the value of `|(2a+3l,3l+5m,5m+4a),(2l+3b,3b+5n,5n+4l),(2m+3n,3n+5c,5c+4m)|=lambda` then `[lambda/2]` equals

A

`180`

B

`240`

C

`360`

D

`480`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will follow the logic presented in the video transcript. ### Step 1: Define the Determinant Let \[ D = \begin{vmatrix} a & l & m \\ l & b & n \\ m & n & c \end{vmatrix} \] We are given that \( |D| = 64 \). ### Step 2: Find the Value of the Determinant's Adjoint The adjoint of a matrix \( D \) of order \( n \) has a determinant given by: \[ |adj(D)| = |D|^{n-1} \] Here, \( n = 3 \), so: \[ |adj(D)| = |D|^{3-1} = |D|^2 \] Since \( |D| = 64 \), we have: \[ |adj(D)| = 64^2 = 4096 \] ### Step 3: Relate the Determinants The determinant of the second matrix given in the problem is: \[ \lambda = \begin{vmatrix} 2a + 3l & 3l + 5m & 5m + 4a \\ 2l + 3b & 3b + 5n & 5n + 4l \\ 2m + 3n & 3n + 5c & 5c + 4m \end{vmatrix} \] We can express this determinant in terms of \( D \). ### Step 4: Factor Out Common Terms We can factor out constants from each column: - From the first column, factor out \( 2 \). - From the second column, factor out \( 3 \). - From the third column, factor out \( 5 \). Thus, we can write: \[ \lambda = 2 \cdot 3 \cdot 5 \cdot \begin{vmatrix} a & l & m \\ l & b & n \\ m & n & c \end{vmatrix} + \text{other terms} \] The "other terms" will also involve the determinant \( D \) in a similar manner. ### Step 5: Calculate the Value of Lambda From the structure of the determinant, we can conclude that: \[ \lambda = (2 \cdot 3 \cdot 5 + 3 \cdot 5 \cdot 4) \cdot |D| \] Calculating the coefficients: \[ 2 \cdot 3 \cdot 5 = 30 \] \[ 3 \cdot 5 \cdot 4 = 60 \] Thus: \[ \lambda = (30 + 60) \cdot |D| = 90 \cdot 64 = 5760 \] ### Step 6: Find the Greatest Integer of Lambda/2 Now we need to find \( \left\lfloor \frac{\lambda}{2} \right\rfloor \): \[ \frac{\lambda}{2} = \frac{5760}{2} = 2880 \] Thus, the greatest integer of \( \frac{\lambda}{2} \) is: \[ \left\lfloor 2880 \right\rfloor = 2880 \] ### Final Answer The value of \( \left\lfloor \frac{\lambda}{2} \right\rfloor \) is \( 2880 \).

To solve the given problem step by step, we will follow the logic presented in the video transcript. ### Step 1: Define the Determinant Let \[ D = \begin{vmatrix} a & l & m \\ l & b & n \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

Find the value of the following. 2lm + 61 - 5m-n for l = 5, m = 2, n = -2

Let P=[(2alpha),(5),(-3alpha^(2))] and Q=[(2l,-m,5n)] are two matrices, where l, m, n, alpha in R , then the value of determinant PQ is equal to

The set of quantum numbers, n = 3, l = 2, m_(l) = 0

Given A=|[a,b,2c],[d,e,2f],[l,m,2n]|,B=|[f,2d,e],[2n,4l,2m],[c,2a,b]| , then the value of B//A is ___________.

Subtract the sum of 3l-4m-7n^2a n d\ 2l+3m-4n^2 from the sum of 9l+2m-3n^2 and -3l+m+4n^2dot

If the direction ratio of two lines are given by 3lm-4ln+mn=0 and l+2m+3n=0 , then the angle between the lines, is

If a != 1 and l n a^(2) + (l n a^(2))^(2) + (l n a^(2))^(3) + ... = 3 (l n a + (l n a)^(2) + ( ln a)^(3) + (l n a)^(4) + ....) then 'a' is equal to

If l, m, n denote the side of a pedal triangle, then (l)/(a ^(2))+(m)/(b^(2))+(n)/(c ^(2)) is equal to

Consider the following sets of quantum numbers. (i) {:(n,l,m,s,),(3,0,0,+1//2,):} (ii) {:(n,l,m,s,),(2,2,1,+1//2,):} (iii) {:(n,l,m,s,),(4,3,-2,-1//2,):} (iv) {:(n,l,m,s,),(1,0,-1,-1//2,):} (v) {:(n,l,m,s,),(3,2,3,+1//2,):} Which of the following sets of quantum number is not possible ?

If l= log "" ( 5)/(7) , m = log ""( 7)/(9) and n = 2 ( log 3 - log sqrt5) , find the value of l+ m + n