Home
Class 12
MATHS
If u=ax+by+cz, v=ay+bz+cx, w=ax+bx+cy, t...

If `u=ax+by+cz`, `v=ay+bz+cx`, `w=ax+bx+cy`, then the value of `|{:(a,b,c),(b,c,a),(c,a,b):}|xx|{:(x,y,z),(y,z,x),(z,x,y):}|` is

A

`u^(2)+v^(2)+w^(2)-2uvw`

B

`u^(3)+v^(3)+w^(3)-3uvw`

C

`0`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \( | \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} | \times | \begin{pmatrix} x & y & z \\ y & z & x \\ z & x & y \end{pmatrix} | \), we will follow these steps: ### Step 1: Calculate the first determinant We need to calculate the determinant \( | \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} | \). Using the formula for the determinant of a 3x3 matrix: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] where: - \( a = a, b = b, c = c \) - \( d = b, e = c, f = a \) - \( g = c, h = a, i = b \) Calculating: \[ D = a(ca - ab) - b(ba - ac) + c(ba - cb) \] This simplifies to: \[ D = a(c^2 - ab) - b(b^2 - ac) + c(ab - c^2) \] ### Step 2: Calculate the second determinant Now we calculate the second determinant \( | \begin{pmatrix} x & y & z \\ y & z & x \\ z & x & y \end{pmatrix} | \). Using the same determinant formula: \[ D' = x(zi - yj) - y(xi - zy) + z(xj - yj) \] where: - \( x = x, y = y, z = z \) - \( d = y, e = z, f = x \) - \( g = z, h = x, i = y \) Calculating: \[ D' = x(z^2 - xy) - y(x^2 - zy) + z(xy - z^2) \] ### Step 3: Combine the determinants Now we multiply the two determinants: \[ | \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} | \times | \begin{pmatrix} x & y & z \\ y & z & x \\ z & x & y \end{pmatrix} | \] ### Step 4: Substitute values for \( u, v, w \) From the problem statement, we have: - \( u = ax + by + cz \) - \( v = ay + bz + cx \) - \( w = az + bx + cy \) ### Step 5: Final expression Using the values of \( u, v, w \) in the determinant, we can express the final result as: \[ u^3 + v^3 + w^3 - 3uvw = 0 \] ### Conclusion Thus, the value of the determinant \( | \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} | \times | \begin{pmatrix} x & y & z \\ y & z & x \\ z & x & y \end{pmatrix} | \) is given by the expression \( u^3 + v^3 + w^3 - 3uvw \).

To find the value of the determinant \( | \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} | \times | \begin{pmatrix} x & y & z \\ y & z & x \\ z & x & y \end{pmatrix} | \), we will follow these steps: ### Step 1: Calculate the first determinant We need to calculate the determinant \( | \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} | \). Using the formula for the determinant of a 3x3 matrix: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

Without expanding at any stage, find the value of : |{:(,a,b,c),(,a+2x, b+2y, c+2z),(,x,y,z):}|

If a^x=b ,b^y=c ,c^z=a , then find the value of x y zdot

If a^x=b ,b^y=c ,c^z=a , then find the value of x y zdot

Prove that |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|=|{:(a,,b,,c),(x,,y,,z),(yz,,xz,,xy):}|

If |{:(a-b,b-c,c-a),(x-y,y-z,z-x),(p-q,q-r,r-p):}|=m|{:(c,a,b),(z,x,y),(r,p,q):}|," then m"=

Without, prove that : |{:(1+b,b+c,c+a),(p+q,q+r,r+p),(x+y,y+z,z+x),:}|=2|{:(a,b,c),(p,q,r),(x,y,z):}|

If a ,b ,c ,d ,e , and f are in G.P. then the value of |((a^2),(d^2),x),((b^2),(e^2),y),((c^2),(f^2),z)| depends on (A) x and y (B) x and z (C) y and z (D) independent of x ,y ,and z

If a^x=b^y=c^z and b^2=a c , then show that y=(2z x)/(z+x)

Findthe distance of P(a,b,c) from x,y and z-axes.

Find the value of x and y: ax +by =a-b bx-ay =a+b