Home
Class 12
MATHS
If the number of positive integral solut...

If the number of positive integral solutions of `u+v+w=n` be denoted by `P_(n)` then the absolute value of `|{:(P_(n),P_(n+1),P_(n+2)),(P_(n+1),P_(n+2),P_(n+3)),(P_(n+2),P_(n+3),P_(n+4)):}|` is

A

`-1`

B

`2`

C

`3`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the absolute value of the determinant given by: \[ D = \begin{vmatrix} P(n) & P(n+1) & P(n+2) \\ P(n+1) & P(n+2) & P(n+3) \\ P(n+2) & P(n+3) & P(n+4) \end{vmatrix} \] ### Step 1: Determine \( P(n) \) The number of positive integral solutions of the equation \( u + v + w = n \) can be represented as \( P(n) \). Since \( u, v, w \) must all be at least 1, we can make a substitution: Let \( u' = u - 1 \), \( v' = v - 1 \), and \( w' = w - 1 \). Then, the equation becomes: \[ u' + v' + w' = n - 3 \] where \( u', v', w' \geq 0 \). The number of non-negative integral solutions to this equation is given by the "stars and bars" theorem: \[ P(n) = \binom{n-1}{2} \] ### Step 2: Calculate \( P(n+1), P(n+2), P(n+3), P(n+4) \) Using the formula derived above, we can calculate: - \( P(n+1) = \binom{n}{2} \) - \( P(n+2) = \binom{n+1}{2} \) - \( P(n+3) = \binom{n+2}{2} \) - \( P(n+4) = \binom{n+3}{2} \) ### Step 3: Substitute into the Determinant Now we substitute these values into the determinant \( D \): \[ D = \begin{vmatrix} \binom{n-1}{2} & \binom{n}{2} & \binom{n+1}{2} \\ \binom{n}{2} & \binom{n+1}{2} & \binom{n+2}{2} \\ \binom{n+1}{2} & \binom{n+2}{2} & \binom{n+3}{2} \end{vmatrix} \] ### Step 4: Calculate the Determinant To calculate this determinant, we can use properties of determinants. Notice that the rows of the determinant are formed by consecutive binomial coefficients. This structure allows us to apply the determinant property that states if two rows (or columns) are identical, the determinant is zero. In this case, we can see that: \[ D = 0 \] ### Step 5: Find the Absolute Value Since the determinant \( D \) is zero, the absolute value is: \[ |D| = |0| = 0 \] ### Final Answer Thus, the absolute value of the determinant is: \[ \boxed{0} \]

To solve the problem, we need to find the absolute value of the determinant given by: \[ D = \begin{vmatrix} P(n) & P(n+1) & P(n+2) \\ P(n+1) & P(n+2) & P(n+3) \\ P(n+2) & P(n+3) & P(n+4) \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

The value of n, if ""^(n)P_(5) = 20.""^(n)P_(3) , is

If p^(2)-p+1=0 , then the value of p^(3n) can be

Find the value of n if ""^(n) P_(13) : ""^(n+1) P_(12) =(3)/(4)

Prove that : P(n,n)= 2P (n,n -2)

If n be a positive integer and P_n denotes the product of the binomial coefficients in the expansion of (1 +x)^n , prove that (P_(n+1))/P_n=(n+1)^n/(n!) .

Find the negative terms of the sequence X_(n)=(.^(n+4)P_(4))/(P_(n+2))-(143)/(4P_(n))

If n P_r=^n P_(r+1) and n C_r=^n C_(r-1,) then the value of (n+r) is.

if .^(2n+1)P_(n-1):^(2n-1)P_(n)=7:10 , then .^(n)P_(3) equals

If ^n P_r=^n P_(r+1)a n d^n C_r=^n C_(r-1,) then the value of n+r is.

If P(n ,4)=20 x P(n ,2),find n.