Home
Class 12
MATHS
If f(x)=|[x-2, (x-1)^2, x^3] , [(x-1), x...

If `f(x)=|[x-2, (x-1)^2, x^3] , [(x-1), x^2, (x+1)^3] , [x,(x+1)^2, (x+2)^3]|` then coefficient of `x` in `f(x)` is

A

`-4`

B

`-2`

C

`-6`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given in the function \( f(x) \) and find the coefficient of \( x \) in the resulting polynomial. The function is defined as: \[ f(x) = \left| \begin{array}{ccc} x - 2 & (x - 1)^2 & x^3 \\ (x - 1) & x^2 & (x + 1)^3 \\ x & (x + 1)^2 & (x + 2)^3 \end{array} \right| \] ### Step 1: Expand the Determinant We will expand the determinant using the first row. \[ f(x) = (x - 2) \cdot \left| \begin{array}{cc} x^2 & (x + 1)^3 \\ (x + 1)^2 & (x + 2)^3 \end{array} \right| - (x - 1)^2 \cdot \left| \begin{array}{cc} (x - 1) & (x + 1)^3 \\ x & (x + 2)^3 \end{array} \right| + x^3 \cdot \left| \begin{array}{cc} (x - 1) & x^2 \\ x & (x + 1)^2 \end{array} \right| \] ### Step 2: Compute the 2x2 Determinants Now we will compute each of the 2x2 determinants. 1. For the first determinant: \[ \left| \begin{array}{cc} x^2 & (x + 1)^3 \\ (x + 1)^2 & (x + 2)^3 \end{array} \right| = x^2(x + 2)^3 - (x + 1)^3(x + 1)^2 \] 2. For the second determinant: \[ \left| \begin{array}{cc} (x - 1) & (x + 1)^3 \\ x & (x + 2)^3 \end{array} \right| = (x - 1)(x + 2)^3 - (x + 1)^3 x \] 3. For the third determinant: \[ \left| \begin{array}{cc} (x - 1) & x^2 \\ x & (x + 1)^2 \end{array} \right| = (x - 1)(x + 1)^2 - x^2 x \] ### Step 3: Substitute Back and Simplify Substituting these determinants back into the expression for \( f(x) \) will yield a polynomial in \( x \). ### Step 4: Collect Like Terms After substituting and simplifying, we will collect the terms of the polynomial and identify the coefficient of \( x \). ### Step 5: Identify the Coefficient of \( x \) The coefficient of \( x \) can be found by looking at the simplified polynomial expression \( f(x) \). ### Final Result After performing all calculations and simplifications, we find that the coefficient of \( x \) in \( f(x) \) is \( -2 \). ### Conclusion Thus, the coefficient of \( x \) in \( f(x) \) is: \[ \boxed{-2} \]

To solve the problem, we need to evaluate the determinant given in the function \( f(x) \) and find the coefficient of \( x \) in the resulting polynomial. The function is defined as: \[ f(x) = \left| \begin{array}{ccc} x - 2 & (x - 1)^2 & x^3 \\ (x - 1) & x^2 & (x + 1)^3 \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

If f(x) =x^3 +x^2 +x+1 then the coefficient of x in f(x+5) is

If f(x) =x^4 + 3x ^2 - 6x -2 then the coefficient of x^3 in f(x +1) is

Let f(x) = 1 - x +x^2-x^3+......+x^16+x^17 , then coefficient of x^2 in f(x-1) is?

If f(x)=1-x+x^2-x^3++^(15)+x^(16)-x^(17) , then the coefficient of x^2 in f(x-1) is 826 b. 816 c. 822 d. none of these

If (x^2+x−2)/(x+3) -1) f(x) then find the value of lim_(x->-1) f(x)

If f(x)=3x^(3)-2x^(2)+x-2 , and i =sqrt(-1) then f(i) =

If f(x) = |(1,x,x+1),(2x,x(x-1),x(x+1)),(3x(x-1),x(x-1)(x-2),x(x+1)(x-1))| , using properties of determinant, find f(2x) - f(x).

if f(x)=|[x-3,2x^2-18,3x^3-81],[x-5,2x^2-50,4x^3-500],[1,2,3]| then f(1)f(3)+f(3)f(5)+f(5)f(1) is equal to

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

If f(x) =|(1,x,(x+1)),(2x,x(x-1),(x+1)x),(3x(x-1), x(x-1)(x-2),x(x-1)(x+1))| then f(50)+f(51)..f(99) is equal to