Home
Class 12
MATHS
Find all values of lambda for which the ...

Find all values of `lambda` for which the `(lambda-1)x+(3lambda+1)y+2lambdaz=0(lambda-1)x+(4lambda-2)y+(lambda+3)z=0 2x+(3lambda+1)y+3(lambda-1)z=0` possess non-trivial solution and find the ratios `x:y:z,` where `lambda` has the smallest of these value.

A

`3 : 2 :1`

B

`3 : 3 : 2`

C

`1 : 3 : 1`

D

`1 : 1 : 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find values of \( \lambda \) for which the following system of equations has a non-trivial solution: 1. \((\lambda - 1)x + (3\lambda + 1)y + 2\lambda z = 0\) 2. \((\lambda - 1)x + (4\lambda - 2)y + (\lambda + 3)z = 0\) 3. \(2x + (3\lambda + 1)y + 3(\lambda - 1)z = 0\) ### Step 1: Form the Coefficient Matrix We can express the system in matrix form as follows: \[ \begin{bmatrix} \lambda - 1 & 3\lambda + 1 & 2\lambda \\ \lambda - 1 & 4\lambda - 2 & \lambda + 3 \\ 2 & 3\lambda + 1 & 3(\lambda - 1) \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0 \] ### Step 2: Set Up the Determinant For the system to have a non-trivial solution, the determinant of the coefficient matrix must be zero: \[ D = \begin{vmatrix} \lambda - 1 & 3\lambda + 1 & 2\lambda \\ \lambda - 1 & 4\lambda - 2 & \lambda + 3 \\ 2 & 3\lambda + 1 & 3(\lambda - 1) \end{vmatrix} = 0 \] ### Step 3: Calculate the Determinant We can calculate the determinant using cofactor expansion. \[ D = (\lambda - 1) \begin{vmatrix} 4\lambda - 2 & \lambda + 3 \\ 3\lambda + 1 & 3(\lambda - 1) \end{vmatrix} - (3\lambda + 1) \begin{vmatrix} \lambda - 1 & \lambda + 3 \\ 2 & 3(\lambda - 1) \end{vmatrix} + 2\lambda \begin{vmatrix} \lambda - 1 & 4\lambda - 2 \\ 2 & 3\lambda + 1 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \(\begin{vmatrix} 4\lambda - 2 & \lambda + 3 \\ 3\lambda + 1 & 3(\lambda - 1) \end{vmatrix} = (4\lambda - 2)(3(\lambda - 1)) - (\lambda + 3)(3\lambda + 1)\) 2. \(\begin{vmatrix} \lambda - 1 & \lambda + 3 \\ 2 & 3(\lambda - 1) \end{vmatrix} = (\lambda - 1)(3(\lambda - 1)) - (\lambda + 3)(2)\) 3. \(\begin{vmatrix} \lambda - 1 & 4\lambda - 2 \\ 2 & 3\lambda + 1 \end{vmatrix} = (\lambda - 1)(3\lambda + 1) - (4\lambda - 2)(2)\) ### Step 4: Solve the Determinant Equation After calculating the determinants and simplifying, we set \( D = 0 \) and solve for \( \lambda \). This will yield values for \( \lambda \). ### Step 5: Find the Ratios \( x:y:z \) Once we have the values of \( \lambda \), we substitute the smallest value of \( \lambda \) back into the original equations to find the ratios \( x:y:z \).

To solve the problem, we need to find values of \( \lambda \) for which the following system of equations has a non-trivial solution: 1. \((\lambda - 1)x + (3\lambda + 1)y + 2\lambda z = 0\) 2. \((\lambda - 1)x + (4\lambda - 2)y + (\lambda + 3)z = 0\) 3. \(2x + (3\lambda + 1)y + 3(\lambda - 1)z = 0\) ### Step 1: Form the Coefficient Matrix We can express the system in matrix form as follows: ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

The system of homogeneous equation lambdax+(lambda+1)y +(lambda-1)z=0, (lambda+1)x+lambday+(lambda+2)z=0, (lambda-1)x+(lambda+2)y + lambdaz=0 has non-trivial solution for :

The value(s) of lambda for which the system of equations (1-lambda)x+3y-4z=0 x-(3+lambda)y + 5z=0 3x+y-lambdaz=0 possesses non-trivial solutions .

The values of theta , lambda for which the following equations sinthetax-costhetay+(lambda+1)z=0 , costhetax+sinthetay-lambdaz=0 , lambdax+(lambda+1)y+costhetaz=0 have non trivial solution, is

The value of the lambda if the lines (2x+3y+4)+lambda(6x-y+12)=0 are

The set of all values of lambda for which the system of linear equations x - 2y - 2z = lambdax x + 2y + z = lambday -x -y = lambdaz has a non-trivial solution

Find the range of values of lambda for which the point (lambda,-1) is exterior to both the parabolas y^2=|x|dot

Find the range of values of lambda for which the point (lambda,-1) is exterior to both the parabolas y^2=|x|dot

Find the value of lambda for which the plane x+y+z=sqrt(3)lambda touches the sphere x^2+y^2+z^2-2x-2y-2z=6.

Find the range of lambda for which equation x^3+x^2-x-1-lambda=0 has 3 real solution.

The values of lambda for which the function f(x)=lambdax^3-2lambdax^2+(lambda+1)x+3lambda is increasing through out number line (a) lambda in (-3,3) (b) lambda in (-3,0) (c) lambda in (0,3) (d) lambda in (1,3)