Home
Class 12
MATHS
The system of homogenous equations tx+...

The system of homogenous equations
`tx+(t+1)y+(t-1)z=0`, `(t+1)x+ty+(t+2)z=0`, `(t-1)x+(t+2)y+tz=0` has a non trivial solution for

A

exactly three real values of `t`

B

exactly two real values of `t`

C

exactly one real values of `t`

D

infinite number of values of `t`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( t \) for which the system of homogeneous equations has a non-trivial solution, we need to set the determinant of the coefficient matrix to zero. The given equations are: 1. \( tx + (t + 1)y + (t - 1)z = 0 \) 2. \( (t + 1)x + ty + (t + 2)z = 0 \) 3. \( (t - 1)x + (t + 2)y + tz = 0 \) ### Step 1: Write the Coefficient Matrix The coefficient matrix \( A \) for the system can be written as: \[ A = \begin{bmatrix} t & t + 1 & t - 1 \\ t + 1 & t & t + 2 \\ t - 1 & t + 2 & t \end{bmatrix} \] ### Step 2: Calculate the Determinant To find the values of \( t \) for which the determinant of \( A \) is zero, we compute \( \det(A) \). \[ \det(A) = \begin{vmatrix} t & t + 1 & t - 1 \\ t + 1 & t & t + 2 \\ t - 1 & t + 2 & t \end{vmatrix} \] ### Step 3: Expand the Determinant We can expand the determinant using cofactor expansion along the first row: \[ \det(A) = t \begin{vmatrix} t & t + 2 \\ t + 2 & t \end{vmatrix} - (t + 1) \begin{vmatrix} t + 1 & t + 2 \\ t - 1 & t \end{vmatrix} + (t - 1) \begin{vmatrix} t + 1 & t \\ t - 1 & t + 2 \end{vmatrix} \] ### Step 4: Calculate the 2x2 Determinants Calculating the 2x2 determinants: 1. \( \begin{vmatrix} t & t + 2 \\ t + 2 & t \end{vmatrix} = t^2 - (t + 2)(t + 2) = t^2 - (t^2 + 4t + 4) = -4t - 4 \) 2. \( \begin{vmatrix} t + 1 & t + 2 \\ t - 1 & t \end{vmatrix} = (t + 1)t - (t + 2)(t - 1) = t^2 + t - (t^2 - t + 2) = 2t - 1 \) 3. \( \begin{vmatrix} t + 1 & t \\ t - 1 & t + 2 \end{vmatrix} = (t + 1)(t + 2) - t(t - 1) = (t^2 + 3t + 2) - (t^2 - t) = 4t + 2 \) ### Step 5: Substitute Back into the Determinant Substituting these back into the determinant expression: \[ \det(A) = t(-4t - 4) - (t + 1)(2t - 1) + (t - 1)(4t + 2) \] ### Step 6: Simplify the Expression Now we simplify: \[ = -4t^2 - 4t - (2t^2 + t - 2t - 1) + (4t^2 + 2t - 4t - 2) \] \[ = -4t^2 - 4t - 2t^2 + 1 + 4t^2 - 2 \] \[ = -2t^2 - 4t - 1 \] ### Step 7: Set the Determinant to Zero Setting the determinant equal to zero for a non-trivial solution: \[ -2t^2 - 4t - 1 = 0 \] ### Step 8: Solve the Quadratic Equation Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = -2, b = -4, c = -1 \): \[ t = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(-2)(-1)}}{2(-2)} \] \[ = \frac{4 \pm \sqrt{16 - 8}}{-4} \] \[ = \frac{4 \pm \sqrt{8}}{-4} \] \[ = \frac{4 \pm 2\sqrt{2}}{-4} \] \[ = -1 \mp \frac{\sqrt{2}}{2} \] ### Conclusion Thus, there are exactly two real values of \( t \) for which the system has a non-trivial solution. ### Final Answer The correct option is **exactly two real values of \( t \)**. ---

To determine the values of \( t \) for which the system of homogeneous equations has a non-trivial solution, we need to set the determinant of the coefficient matrix to zero. The given equations are: 1. \( tx + (t + 1)y + (t - 1)z = 0 \) 2. \( (t + 1)x + ty + (t + 2)z = 0 \) 3. \( (t - 1)x + (t + 2)y + tz = 0 \) ### Step 1: Write the Coefficient Matrix The coefficient matrix \( A \) for the system can be written as: ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

Show that the homogenous system of equations x - 2y + z = 0, x + y - z = 0, 3 x + 6y - 5z = 0 has a non-trivial solution. Also find the solution

The value of a for which system of equations , a^3x+(a+1)^3y+(a+2)^3z=0, ax+(a+1)y+(a+2)z=0, x + y + z = 0 , has a non-zero solution is:

The product of all values of t , for which the system of equations (a-t)x+b y+c z=0,b x+(c-t)y+a z=0,c x+a y+(b-t)z=0 has non-trivial solution, is (a) |[a, -c, -b], [-c, b, -a], [-b, -a, c]| (b) |[a, b, c], [b, c, a], [c, a, b]| (c) |[a, c, b], [b, a, c], [c, b, a]| (d) |[a, a+b, b+c], [b, b+c, c+a], [c, c+a, a+b]|

if the system of equations (a-t)x+by +cz=0 bx+(c-t) y+az=0 cx+ay+(b-t)z=0 has non-trivial solutions then product of all possible values of t is

Prove that the system of equations in xa +y+z=0 , x +by +z=0 , x +y+cz=0 has a non - trivial solution then 1/(1-a) + 1/(1-b)+ 1/(1-c)=

If the system of linear equations x+a y+a z=0,\ x+b y+b z=0,\ x+c y+c z=0 has a non zero solution then (a) System is always non trivial solutions (b) System is consistent only when a=b=c (c) If a!=b!=c then x=0,\ y=t ,\ z=-t\ AAt in R (d) If a=b=c\ t h e n\ y=t_1, z=t_2,\ x=-a(t_1+t_2)AAt_1, t_2 in R

The system of homogeneous equation lambdax+(lambda+1)y +(lambda-1)z=0, (lambda+1)x+lambday+(lambda+2)z=0, (lambda-1)x+(lambda+2)y + lambdaz=0 has non-trivial solution for :

For what values of k the set of equations 2x- 3y + 6z - 5t = 3, y -4z + t=1 , 4x-5y+8z-9t = k has infinite solution and no solution.

f (x) = int _(0) ^(x) e ^(t ^(3)) (t ^(2) -1) (t+1) ^(2011) dt (x gt 0) then :

Show that in general there are three values of t for which the following system of equations has a non- trival solution (a-t)x+by+cz=0, bx+(c-t)y+az=0 and cx+ay+(b-t)z=0. Express the product of these values of t in the form of a determinant.