Home
Class 12
MATHS
If a , b , c are non-zero, then the syst...

If `a , b , c` are non-zero, then the system of equations `(alpha+a)x+alphay+alphaz=0,` `alphax+(alpha+b)y+alphaz=0,` `alphax+alphay+(alpha+c)z=0` has a non-trivial solution if

A

`2alpha=a+b+c`

B

`alpha^(-1)=a+b+c`

C

`alpha+a+b+c=1`

D

`alpha^(-1)=-(a^(-1)+b^(-1)+c^(-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the conditions under which the given system of equations has a non-trivial solution, we need to analyze the determinant of the coefficient matrix. Let's break down the solution step by step. ### Step 1: Write the system of equations in matrix form The given equations are: 1. \((\alpha + a)x + \alpha y + \alpha z = 0\) 2. \(\alpha x + (\alpha + b)y + \alpha z = 0\) 3. \(\alpha x + \alpha y + (\alpha + c)z = 0\) We can express this in matrix form as: \[ \begin{pmatrix} \alpha + a & \alpha & \alpha \\ \alpha & \alpha + b & \alpha \\ \alpha & \alpha & \alpha + c \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \] ### Step 2: Set up the determinant condition For the system to have a non-trivial solution, the determinant of the coefficient matrix must be zero: \[ \text{det}\begin{pmatrix} \alpha + a & \alpha & \alpha \\ \alpha & \alpha + b & \alpha \\ \alpha & \alpha & \alpha + c \end{pmatrix} = 0 \] ### Step 3: Calculate the determinant Let \(D\) denote the determinant: \[ D = \begin{vmatrix} \alpha + a & \alpha & \alpha \\ \alpha & \alpha + b & \alpha \\ \alpha & \alpha & \alpha + c \end{vmatrix} \] Using the determinant formula for a \(3 \times 3\) matrix, we can expand \(D\): \[ D = (\alpha + a)((\alpha + b)(\alpha + c) - \alpha^2) - \alpha(\alpha(\alpha + c) - \alpha^2) + \alpha(\alpha(\alpha + b) - \alpha^2) \] ### Step 4: Simplify the determinant expression Expanding and simplifying the determinant: 1. The first term expands to: \[ (\alpha + a)(\alpha^2 + b\alpha + c\alpha + bc - \alpha^2) = (\alpha + a)(b\alpha + c\alpha + bc) \] 2. The second term simplifies to: \[ -\alpha(\alpha^2 + c\alpha - \alpha^2) = -\alpha c\alpha \] 3. The third term simplifies to: \[ \alpha(\alpha^2 + b\alpha - \alpha^2) = \alpha b\alpha \] Combining these terms gives us: \[ D = (\alpha + a)(b\alpha + c\alpha + bc) - \alpha c\alpha + \alpha b\alpha \] ### Step 5: Set the determinant to zero We need to set \(D = 0\) and solve for \(\alpha\): \[ (\alpha + a)(b\alpha + c\alpha + bc) - \alpha c\alpha + \alpha b\alpha = 0 \] ### Step 6: Rearranging and solving After rearranging, we can express this as: \[ \alpha(b + c + \frac{bc}{\alpha + a}) + a(b + c + \frac{bc}{\alpha + a}) = 0 \] ### Step 7: Final condition From the above expression, we can derive the condition: \[ \frac{1}{\alpha} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \] ### Conclusion Thus, the system of equations has a non-trivial solution if: \[ \frac{1}{\alpha} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \]

To determine the conditions under which the given system of equations has a non-trivial solution, we need to analyze the determinant of the coefficient matrix. Let's break down the solution step by step. ### Step 1: Write the system of equations in matrix form The given equations are: 1. \((\alpha + a)x + \alpha y + \alpha z = 0\) 2. \(\alpha x + (\alpha + b)y + \alpha z = 0\) 3. \(\alpha x + \alpha y + (\alpha + c)z = 0\) ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

Let lambda and alpha be real. Then the numbers of intergral values lambda for which the system of linear equations lambdax +(sin alpha) y+ (cos alpha) z=0 x + (cos alpha) y+ (sin alpha) z=0 -x+(sin alpha) y -(cos alpha) z=0 has non-trivial solutions is

The system of equations alphax+y+z=alpha-1, x+alphay+z=alpha-1 x+y+alphaz=alpha-1 and has no solution if alpha is

Statement I The system of linear equations x+(sin alpha )y+(cos alpha )z=0 x+(cos alpha ) y+(sin alpha )z=0 -x+(sin alpha )y-(cos alpha )z=0 has a not trivial solution for only one value of alpha lying between 0 and pi . Statement II |{:(sin x, cos x , cos x),( cos x , sin x , cos x) , (cos x , cos x , sin x ):}|=0 has no solution in the interval -pi//4 lt x lt pi//4 .

Let alpha ,beta and gamma be the roots of the equations x^(3) +ax^(2)+bx+ c=0,(a ne 0) . If the system of equations alphax + betay+gammaz=0 beta x +gamma y+ alphaz =0 and gamma x =alpha y + betaz =0 has non-trivial solution then

The number of values of alpha in [-10pi, 10pi] for which the equations (sin alpha)x-(cos alpha)y+3z=0, (cos alpha)x+(sin alpha)y-2z=0 and 2x+3y+(cos alpha)z=0 have nontrivial solution is

Assertion : The system of linear equations x+(sinalpha)y+(cosalpha)z=0x+(cosalpha)y+(sinalpha)z=0x-(sinalpha)y-(cos\ alpha)z=0 has a non-trivial solution for only value of alpha lying the interval (0,\ pi) Reason: The equation in\ alpha cosalphas in alpha cosalphasinalpha cosalphasinalphac osalpha-sinalpha-cosalpha|=0 has only one solution lying in the interval (-pi/4,\ pi/4)

For what value of alpha, the system of equations alphax+3y=alpha-3 12 x+alphay=alpha will have no solution?

Show that the homogenous system of equations x - 2y + z = 0, x + y - z = 0, 3 x + 6y - 5z = 0 has a non-trivial solution. Also find the solution

Sum of roots of equations f(x) - g(x)=0 is (a)0 (b) 2alpha (c) -2alpha (d) 4alpha

If a , b , c are distinct real numbers and the system of equations a x+a^2y+(a^3+1)z=0 b x+b^2y+(b^3+1)z=0 c x+c^2y+(c^3+1)=0 has a non-trivial solution, show that a b c=-1