Home
Class 12
MATHS
The values of theta, lambda for which th...

The values of `theta`, `lambda` for which the following equations `sinthetax-costhetay+(lambda+1)z=0` , `costhetax+sinthetay-lambdaz=0` , `lambdax+(lambda+1)y+costhetaz=0`
have non trivial solution, is

A

`theta=npi`, `lambda in R-{0}`

B

`theta=2npi`, `lambda` is any rational number

C

`theta=(2n+1)pi`, `lambda in R^(+)`, `n in I`

D

`theta=(2n+1)(pi)/(2)`, `lambda in R`, `n in I`

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( \theta \) and \( \lambda \) for which the given system of equations has a non-trivial solution, we need to analyze the determinant of the coefficient matrix formed by the equations. The equations are: 1. \( \sin \theta \cdot x - \cos \theta \cdot y + (\lambda + 1) z = 0 \) 2. \( \cos \theta \cdot x + \sin \theta \cdot y - \lambda z = 0 \) 3. \( \lambda x + (\lambda + 1) y + \cos \theta \cdot z = 0 \) ### Step 1: Form the Coefficient Matrix The coefficients of \( x, y, z \) from the equations form the following matrix: \[ A = \begin{bmatrix} \sin \theta & -\cos \theta & \lambda + 1 \\ \cos \theta & \sin \theta & -\lambda \\ \lambda & \lambda + 1 & \cos \theta \end{bmatrix} \] ### Step 2: Calculate the Determinant To find the values of \( \theta \) and \( \lambda \) for which the system has a non-trivial solution, we need to set the determinant of matrix \( A \) to zero: \[ \Delta = \begin{vmatrix} \sin \theta & -\cos \theta & \lambda + 1 \\ \cos \theta & \sin \theta & -\lambda \\ \lambda & \lambda + 1 & \cos \theta \end{vmatrix} \] ### Step 3: Expand the Determinant Using the determinant formula, we can expand it along the first row: \[ \Delta = \sin \theta \begin{vmatrix} \sin \theta & -\lambda \\ \lambda + 1 & \cos \theta \end{vmatrix} + \cos \theta \begin{vmatrix} \cos \theta & -\lambda \\ \lambda & \cos \theta \end{vmatrix} + (\lambda + 1) \begin{vmatrix} \cos \theta & \sin \theta \\ \lambda & \lambda + 1 \end{vmatrix} \] Calculating these 2x2 determinants: 1. \( \begin{vmatrix} \sin \theta & -\lambda \\ \lambda + 1 & \cos \theta \end{vmatrix} = \sin \theta \cdot \cos \theta + \lambda(\lambda + 1) \) 2. \( \begin{vmatrix} \cos \theta & -\lambda \\ \lambda & \cos \theta \end{vmatrix} = \cos^2 \theta + \lambda^2 \) 3. \( \begin{vmatrix} \cos \theta & \sin \theta \\ \lambda & \lambda + 1 \end{vmatrix} = \cos \theta(\lambda + 1) - \sin \theta \cdot \lambda \) ### Step 4: Set the Determinant to Zero Combining these results, we set \( \Delta = 0 \): \[ \sin \theta (\sin \theta \cos \theta + \lambda(\lambda + 1)) + \cos \theta (\cos^2 \theta + \lambda^2) + (\lambda + 1)(\cos \theta(\lambda + 1) - \lambda \sin \theta) = 0 \] ### Step 5: Solve for \( \theta \) and \( \lambda \) This equation is complex, but we can simplify it. We know that for \( \Delta = 0 \), one condition is \( \cos \theta = 0 \), which gives: \[ \theta = \frac{(2n + 1)\pi}{2}, \quad n \in \mathbb{Z} \] For the other condition, we can analyze the quadratic in \( \lambda \): \[ \lambda^2 + \lambda + 1 = 0 \] This has no real solutions, indicating that \( \lambda \) can take any real value except for the roots of this quadratic. ### Final Answer Thus, the values of \( \theta \) and \( \lambda \) for which the system has non-trivial solutions are: - \( \theta = \frac{(2n + 1)\pi}{2} \) for \( n \in \mathbb{Z} \) - \( \lambda \in \mathbb{R} \)

To find the values of \( \theta \) and \( \lambda \) for which the given system of equations has a non-trivial solution, we need to analyze the determinant of the coefficient matrix formed by the equations. The equations are: 1. \( \sin \theta \cdot x - \cos \theta \cdot y + (\lambda + 1) z = 0 \) 2. \( \cos \theta \cdot x + \sin \theta \cdot y - \lambda z = 0 \) 3. \( \lambda x + (\lambda + 1) y + \cos \theta \cdot z = 0 \) ### Step 1: Form the Coefficient Matrix The coefficients of \( x, y, z \) from the equations form the following matrix: ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos

Similar Questions

Explore conceptually related problems

Let lambda and alpha be real. Then the numbers of intergral values lambda for which the system of linear equations lambdax +(sin alpha) y+ (cos alpha) z=0 x + (cos alpha) y+ (sin alpha) z=0 -x+(sin alpha) y -(cos alpha) z=0 has non-trivial solutions is

The system of homogeneous equation lambdax+(lambda+1)y +(lambda-1)z=0, (lambda+1)x+lambday+(lambda+2)z=0, (lambda-1)x+(lambda+2)y + lambdaz=0 has non-trivial solution for :

The system of equations x - y cos theta + z cos 2theta =0 -xcostheta+y-zcostheta=0 x cos 2theta-ycostheta + z=0 has non-trivial solution for theta equals

The value of lambda for which the equation x^2-y^2 - x - lambda y - 2 = 0 represent a pair of straight line, are

Determine the values of lambda for which the following system of equations : lambdax+3y-z=1 , x+2y+z=2 , -lambdax+y+2z=-1 has non-trival solutions.

the set of equations lambdax-y+(cos theta) z=0,3x+y+2z=0 (cos theta) x+y+2z=0 , 0 le theta lt 2 pi has non-trivial solution (s)

The number of integral values of a for which the system of linear equations x sin theta -2 y cos theta -az=0 , x+2y+z=0,-x+y+z=0 may have non-trivial solutions, then

the value of theta for which the system of equations (sin 3theta)x-2y+3z=0, (cos 2theta)x+8y-7z=0 and 2x+14y-11z=0 has a non - trivial solution, is (here, n in Z )

The value(s) of lambda for which the system of equations (1-lambda)x+3y-4z=0 x-(3+lambda)y + 5z=0 3x+y-lambdaz=0 possesses non-trivial solutions .

Find the value of lambda for which the equation lambdax^2 + 4xy + y^2 + lambdax + 3y + 2=0 represents a pair of straight line