Home
Class 12
MATHS
P(A)=3//8,P(B)=1//2,P(AuuB)=5//8, which ...

`P(A)=3//8,P(B)=1//2,P(AuuB)=5//8,` which of the following do/does hold good?

A

`P(A^(C )//B)=2P(A//B^(C ))`

B

`P(B)=P(A//B)`

C

`15P(A^(c )//B^(C ))=8P(B//A^(C ))`

D

`P(A//B^(C ))=(AnnB)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the given probabilities and apply the relevant probability formulas. ### Given: - \( P(A) = \frac{3}{8} \) - \( P(B) = \frac{1}{2} \) - \( P(A \cup B) = \frac{5}{8} \) ### Step 1: Find \( P(A \cap B) \) We can use the formula for the union of two events: \[ P(A \cup B) = P(A) + P(B) - P(A \cap B) \] Substituting the given values: \[ \frac{5}{8} = \frac{3}{8} + \frac{1}{2} - P(A \cap B) \] Convert \( \frac{1}{2} \) to eighths: \[ \frac{1}{2} = \frac{4}{8} \] Now substitute: \[ \frac{5}{8} = \frac{3}{8} + \frac{4}{8} - P(A \cap B) \] Combine the fractions: \[ \frac{5}{8} = \frac{7}{8} - P(A \cap B) \] Now, isolate \( P(A \cap B) \): \[ P(A \cap B) = \frac{7}{8} - \frac{5}{8} = \frac{2}{8} = \frac{1}{4} \] ### Step 2: Check Option 1 We need to check if: \[ P(A' | B) = 2 \cdot P(A | B') \] Where \( A' \) is the complement of A and \( B' \) is the complement of B. #### Find \( P(A' | B) \): Using the definition of conditional probability: \[ P(A' | B) = \frac{P(A' \cap B)}{P(B)} = \frac{P(B) - P(A \cap B)}{P(B)} = \frac{\frac{1}{2} - \frac{1}{4}}{\frac{1}{2}} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2} \] #### Find \( P(A | B') \): \[ P(A | B') = \frac{P(A \cap B')}{P(B')} = \frac{P(A) - P(A \cap B)}{P(B')} \] Calculate \( P(B') \): \[ P(B') = 1 - P(B) = 1 - \frac{1}{2} = \frac{1}{2} \] Now substitute: \[ P(A | B') = \frac{\frac{3}{8} - \frac{1}{4}}{\frac{1}{2}} = \frac{\frac{3}{8} - \frac{2}{8}}{\frac{1}{2}} = \frac{\frac{1}{8}}{\frac{1}{2}} = \frac{1}{4} \] Now check: \[ P(A' | B) = 2 \cdot P(A | B') \Rightarrow \frac{1}{2} = 2 \cdot \frac{1}{4} \Rightarrow \frac{1}{2} = \frac{1}{2} \] So, Option 1 is **correct**. ### Step 3: Check Option 2 We need to check if: \[ P(A | B) = P(B) \] Calculate \( P(A | B) \): \[ P(A | B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2} \] Since \( P(B) = \frac{1}{2} \), Option 2 is **correct**. ### Step 4: Check Option 3 We need to check if: \[ 15 \cdot P(A' | B') = 8 \cdot P(B | A') \] #### Find \( P(A' | B') \): \[ P(A' | B') = \frac{P(A' \cap B')}{P(B')} = \frac{1 - P(A \cup B)}{P(B')} = \frac{1 - \frac{5}{8}}{\frac{1}{2}} = \frac{\frac{3}{8}}{\frac{1}{2}} = \frac{3}{4} \] Now calculate LHS: \[ LHS = 15 \cdot \frac{3}{4} = \frac{45}{4} \] #### Find \( P(B | A') \): \[ P(B | A') = \frac{P(B \cap A')}{P(A')} = \frac{P(B) - P(A \cap B)}{P(A')} \] Calculate \( P(A') \): \[ P(A') = 1 - P(A) = 1 - \frac{3}{8} = \frac{5}{8} \] Now substitute: \[ P(B | A') = \frac{\frac{1}{2} - \frac{1}{4}}{\frac{5}{8}} = \frac{\frac{1}{4}}{\frac{5}{8}} = \frac{2}{5} \] Now calculate RHS: \[ RHS = 8 \cdot \frac{2}{5} = \frac{16}{5} \] Since \( \frac{45}{4} \neq \frac{16}{5} \), Option 3 is **incorrect**. ### Step 5: Check Option 4 We need to check if: \[ P(A | B') = P(A \cap B) \] We already found: \[ P(A | B') = \frac{1}{4} \quad \text{and} \quad P(A \cap B) = \frac{1}{4} \] Thus, Option 4 is **correct**. ### Summary of Results - Option 1: Correct - Option 2: Correct - Option 3: Incorrect - Option 4: Correct

To solve the problem step by step, we will use the given probabilities and apply the relevant probability formulas. ### Given: - \( P(A) = \frac{3}{8} \) - \( P(B) = \frac{1}{2} \) - \( P(A \cup B) = \frac{5}{8} \) ### Step 1: Find \( P(A \cap B) \) ...
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • PROBABILITY

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    CENGAGE ENGLISH|Exercise Sovled Examples|22 Videos
  • PROBABILITY I

    CENGAGE ENGLISH|Exercise JEE Advanced|7 Videos

Similar Questions

Explore conceptually related problems

If P(A)=1//4, P(B)=1//2, P(A cup B)=5//8, " then " P(A cap B) is

A and B are two events defined as follows: A: It rains today with P(A)=40% B: It rains tomorrwo with P(B)=50% Also, P(it rains today and tomorrow) =30% Also E_(1):P((AnnB)//(AuuB))and E_(2):P({AnnbarB)or (BuubarA)}//(AuuB)). Then which of the following is/are true ?

If in a triangle A B C\ p ,\ q ,\ r are the altitudes from the vertices A , B , C to the opposite sides, then which of the following does not hold good? (sump)\ (sum1/p)=(suma)\ (sum1/a)\ (sump)\ (suma)=(sum1/p)\ \ (sum1/a)\ (sump)\ (sum1/p)\ \ \ (proda)\ (suma b)\ (prodp) (sum1/p)\ prod\ \ (1/p+1/q-1/r)proda^2=16 R^2

A and B are two events defined as follows: A:It rains today with P(A)=40 % B: It rains tomorrow with P(B)=50 % Also, P (it rains today and tomorrow) =30 % Also, E_1: P(AnnB)//(AuuB) and E_2: P({(Ann barB )or(Buu barA )}//(AuuB)) . Then which of the following is/are true ? (a) A and B are independent events (b) P(A//B) (c) E_1 and E_2 are equiprobable (d) P(A/(AuuB))=P(B//(AuuB))

If b+c+,c+a,a+b are in H.P. then which of the following hold(s) good ?

If A and B be two events such that P(A)=1//4, P(B)=1//3 and P(AuuB)=1//2 show that A and B are independent events.

For two events A and B P(A)=6/13, P(B)=5/13 and P(AuuB)=7/13 . Find the values of following: (i) P(AnnB) (ii) P(A//B) (iii) P(B//A)

A and B are two events such that P(A)=3/5, P(B)=3/10 and P(AuuB)=1/2 Find whether A and B are independent or not.

If A and B are two events such that: P(A)=\ 1//3 , P(B)=1//4 and P(AuuB)=5//12 , find P(A//B) and P(B//A) .

A and B are two non-mutually exclusive events. If P(A)=1/4, P(B)=2/5 and P(AuuB)=1/2 , find the value of P(AnnB ).