Home
Class 12
MATHS
The value of lambda with |lambda| lt 16 ...

The value of `lambda` with `|lambda| lt 16` such that `2x^(2) - 10xy +12y^(2) +5x +lambda y - 3 = 0` represents a pair of straight lines is

A

`-10`

B

`-9`

C

10

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) such that the equation \[ 2x^2 - 10xy + 12y^2 + 5x + \lambda y - 3 = 0 \] represents a pair of straight lines. For this to happen, the determinant \( \Delta \) must be equal to zero. ### Step 1: Identify coefficients We can compare the given equation with the general form of the conic section: \[ ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0 \] From the given equation, we can identify the coefficients: - \( a = 2 \) - \( h = -5 \) - \( b = 12 \) - \( g = \frac{5}{2} \) - \( f = \frac{\lambda}{2} \) - \( c = -3 \) ### Step 2: Write the determinant condition The condition for the equation to represent a pair of straight lines is given by: \[ \Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0 \] Substituting the values we identified: \[ \Delta = \begin{vmatrix} 2 & -5 & \frac{5}{2} \\ -5 & 12 & \frac{\lambda}{2} \\ \frac{5}{2} & \frac{\lambda}{2} & -3 \end{vmatrix} \] ### Step 3: Calculate the determinant Calculating the determinant, we use the formula for a 3x3 determinant: \[ \Delta = a \begin{vmatrix} b & f \\ f & c \end{vmatrix} - h \begin{vmatrix} h & f \\ g & c \end{vmatrix} + g \begin{vmatrix} h & b \\ g & f \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 12 & \frac{\lambda}{2} \\ \frac{\lambda}{2} & -3 \end{vmatrix} = 12(-3) - \left(\frac{\lambda}{2}\right)^2 = -36 - \frac{\lambda^2}{4} \) 2. \( \begin{vmatrix} -5 & \frac{\lambda}{2} \\ \frac{5}{2} & -3 \end{vmatrix} = (-5)(-3) - \left(\frac{\lambda}{2}\right)\left(\frac{5}{2}\right) = 15 - \frac{5\lambda}{4} \) 3. \( \begin{vmatrix} -5 & 12 \\ \frac{5}{2} & \frac{\lambda}{2} \end{vmatrix} = (-5)\left(\frac{\lambda}{2}\right) - (12)\left(\frac{5}{2}\right) = -\frac{5\lambda}{2} - 30 \) Now substituting back into the determinant: \[ \Delta = 2\left(-36 - \frac{\lambda^2}{4}\right) + 5\left(15 - \frac{5\lambda}{4}\right) + \frac{5}{2}\left(-\frac{5\lambda}{2} - 30\right) \] ### Step 4: Simplify the expression Expanding this gives: \[ \Delta = -72 - \frac{\lambda^2}{2} + 75 - \frac{25\lambda}{4} - \frac{25\lambda}{4} - \frac{75}{2} \] Combining like terms: \[ \Delta = -\frac{\lambda^2}{2} - \frac{50\lambda}{4} + 75 - 72 - \frac{75}{2} \] This simplifies to: \[ \Delta = -\frac{\lambda^2}{2} - \frac{25\lambda}{2} + \frac{150 - 144}{2} = -\frac{\lambda^2 + 25\lambda + 6}{2} \] Setting \( \Delta = 0 \): \[ \lambda^2 + 25\lambda + 144 = 0 \] ### Step 5: Solve the quadratic equation Using the quadratic formula: \[ \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-25 \pm \sqrt{625 - 576}}{2} \] This simplifies to: \[ \lambda = \frac{-25 \pm 7}{2} \] Calculating the two possible values: 1. \( \lambda = \frac{-25 + 7}{2} = \frac{-18}{2} = -9 \) 2. \( \lambda = \frac{-25 - 7}{2} = \frac{-32}{2} = -16 \) ### Step 6: Check the condition \( |\lambda| < 16 \) We need to check which of these values satisfies \( |\lambda| < 16 \): - For \( \lambda = -9 \), \( |-9| = 9 < 16 \) (valid) - For \( \lambda = -16 \), \( |-16| = 16 \) (not valid) Thus, the value of \( \lambda \) that satisfies the condition is: \[ \lambda = -9 \] ### Final Answer: The value of \( \lambda \) such that \( |\lambda| < 16 \) and the equation represents a pair of straight lines is: \[ \lambda = -9 \]

To solve the problem, we need to find the value of \( \lambda \) such that the equation \[ 2x^2 - 10xy + 12y^2 + 5x + \lambda y - 3 = 0 \] represents a pair of straight lines. For this to happen, the determinant \( \Delta \) must be equal to zero. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lambda for which the equation x^2-y^2 - x - lambda y - 2 = 0 represent a pair of straight line, are

If lambdax^(2)-10xy+12y^(2)+5x-16y-3=0 , represents a pair of straight lines, then the value of lambda is

Find the value of lambda for which the equation lambdax^2 + 4xy + y^2 + lambdax + 3y + 2=0 represents a pair of straight line

2x^2 +2y^2 +4 lambda x+lambda =0 represents a circle for

Find the value of lambda if 2x^2+7x y+3y^2+8x+14 y+lambda=0 represents a pair of straight lines

Find the value of lambda if 2x^2+7x y+3y^2+8x+14 y+lambda=0 represents a pair of straight lines

Find the value of lambdaif2x^2+7x y+3y^2+8x+14 y+lambda=0 represent a pair of straight lines.

If the equation 3x^(2)+xy-y^(2)-3x+6y+k=0 represents a pair of straight lines, then the value of k, is

For what value of lambda does the equation 12x^2-10xy+2y^2+11x-5y+lambda=0 represent a pair of straight lines ? Find their equations and the angle between them.

Find the value of lambda if 2x^2+7x y+3y^2+8x+14 y+lambda=0 represents a pair of straight lines.