Home
Class 12
MATHS
The slope of normal to be parabola y = (...

The slope of normal to be parabola `y = (x^(2))/(4) -2` drawn through the point `(10,-1)` is (a) -2 (b) `-sqrt(3)` (c) `-1/2` (d) `-5/3`

A

`-2`

B

`-sqrt(3)`

C

`-1//2`

D

`-5//3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the slope of the normal to the parabola \( y = \frac{x^2}{4} - 2 \) drawn through the point \( (10, -1) \), we can follow these steps: ### Step 1: Rewrite the equation of the parabola The given equation of the parabola is: \[ y = \frac{x^2}{4} - 2 \] This can be rewritten in standard form: \[ x^2 = 4y + 8 \] ### Step 2: Identify the value of \( a \) In the standard form \( x^2 = 4ay \), we can compare: \[ 4a = 4 \implies a = 1 \] ### Step 3: Write the equation of the normal The equation of the normal to the parabola at a point \( (x_0, y_0) \) is given by: \[ x = m(y - 2a) - a m^3 \] Substituting \( a = 1 \): \[ x = m(y - 2) - m^3 \] This simplifies to: \[ x = my - 2m - m^3 \] ### Step 4: Substitute the point \( (10, -1) \) We know the normal passes through the point \( (10, -1) \). Substituting these values into the equation: \[ 10 = m(-1 - 2) - m^3 \] This simplifies to: \[ 10 = m(-3) - m^3 \] or: \[ 10 = -3m - m^3 \] Rearranging gives us: \[ m^3 + 3m + 10 = 0 \] ### Step 5: Solve the cubic equation We can use the trial and error method to find a root of the cubic equation \( m^3 + 3m + 10 = 0 \). Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 - 6 + 10 = -4 \quad (\text{not a root}) \] Testing \( m = -1 \): \[ (-1)^3 + 3(-1) + 10 = -1 - 3 + 10 = 6 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 - 6 + 10 = -4 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Finally, testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] Testing \( m = -2 \): \[ (-2)^3 + 3(-2) + 10 = -8 + 6 + 10 = 8 \quad (\text{not a root}) \] ### Conclusion The slope of the normal to the parabola at the given point is \( m = -2 \). Thus, the correct answer is: \[ \text{(a) } -2 \]

To find the slope of the normal to the parabola \( y = \frac{x^2}{4} - 2 \) drawn through the point \( (10, -1) \), we can follow these steps: ### Step 1: Rewrite the equation of the parabola The given equation of the parabola is: \[ y = \frac{x^2}{4} - 2 \] This can be rewritten in standard form: ...
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|10 Videos
  • PARABOLA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • PARABOLA

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|7 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE ENGLISH|Exercise Numberical Value Type|5 Videos
  • PERMUTATION AND COMBINATION

    CENGAGE ENGLISH|Exercise Comprehension|8 Videos

Similar Questions

Explore conceptually related problems

Three normals to the parabola y^2= x are drawn through a point (C, O) then C=

The sum of the slopes of the tangents to the parabola y^(2)=8x drawn from the point (-2,3) is

The number of normals drawn to the parabola y^(2)=4x from the point (1,0) is

Find the equation of all possible normals to the parabola x^2=4y drawn from the point (1,2)dot

The slope of the normal to the curve x^(2) + 3y + y^(2) = 5 at the point (1,1) is

Find the equation of tangents drawn to the parabola y=x^2-3x+2 from the point (1,-1)dot

Find the equation of tangents drawn to the parabola y=x^2-3x+2 from the point (1,-1) .

The length of the chord of the parabola y^2=x which is bisected at the point (2, 1) is (a) 2sqrt(3) (b) 4sqrt(3) (c) 3sqrt(2) (d) 2sqrt(5)

Find the equation of normal to parabola y=x^(2)-3x-4 (a) at point (3,-4) (b) having slope 5.

Find the number of distinct normals drawn to parabola y^(2) = 4x from the point (8, 4, sqrt(2))

CENGAGE ENGLISH-PARABOLA-Single Correct Answer Type
  1. The parabolas y^2=4ax and x^2=4by intersect orthogonally at point P(x1...

    Text Solution

    |

  2. Sum of slopes of common tangent to y = (x^(2))/(4) - 3x +10 and y = 2 ...

    Text Solution

    |

  3. The slope of normal to be parabola y = (x^(2))/(4) -2 drawn through th...

    Text Solution

    |

  4. The tangent and normal at the point P(4,4) to the parabola, y^(2) = 4x...

    Text Solution

    |

  5. The point on the parabola y^(2) = 8x at which the normal is inclined a...

    Text Solution

    |

  6. If two distinct chords of a parabola y^2=4ax , passing through (a,2a) ...

    Text Solution

    |

  7. From an external point P , a pair of tangents is drawn to the parabola...

    Text Solution

    |

  8. A variable parabola y^(2) = 4ax, a (where a ne -(1)/(4)) being the par...

    Text Solution

    |

  9. If X is the foot of the directrix on the a parabola. PP' is a double o...

    Text Solution

    |

  10. Let PQ be the latus rectum of the parabola y^2 = 4x with vetex A. Mini...

    Text Solution

    |

  11. Through the vertex O of the parabola y^(2) = 4ax, a perpendicular is d...

    Text Solution

    |

  12. Tangents PQ and PR are drawn to the parabola y^(2) = 20(x+5) and y^(2)...

    Text Solution

    |

  13. The locus of centroid of triangle formed by a tangent to the parabola ...

    Text Solution

    |

  14. PC is the normal at P to the parabola y^2=4ax, C being on the axis. CP...

    Text Solution

    |

  15. If three parabols touch all the lines x = 0, y = 0 and x +y =2, then m...

    Text Solution

    |

  16. If 2x +3y = alpha, x -y = beta and kx +15y = r are 3 concurrent normal...

    Text Solution

    |

  17. Let (2,3) be the focus of a parabola and x + y = 0 and x-y= 0 be its t...

    Text Solution

    |

  18. In the following figure, AS = 4 and SP = 9. The value of SZ is

    Text Solution

    |

  19. TP and TQ are any two tangents to a parabola and the tangent at a thir...

    Text Solution

    |

  20. The distance of two points P and Q on the parabola y^(2) = 4ax from th...

    Text Solution

    |