Home
Class 12
MATHS
If (x,y) lies on the ellipse x^(2)+2y^(3...

If `(x,y)` lies on the ellipse `x^(2)+2y^(3) = 2`, then maximum value of `x^(2)+y^(2)+ sqrt(2)xy - 1` is

A

`(sqrt(5)+1)/(2)`

B

`(sqrt(5)-1)/(2)`

C

`(sqrt(5)+1)/(4)`

D

`(sqrt(5)-1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \( x^2 + y^2 + \sqrt{2}xy - 1 \) given that \( (x, y) \) lies on the ellipse defined by the equation \( x^2 + 2y^2 = 2 \), we can follow these steps: ### Step 1: Parametrize the ellipse The equation of the ellipse can be rewritten in a parametric form. We can let: \[ x = \sqrt{2} \cos \theta, \quad y = \sqrt{1} \sin \theta \] This satisfies the ellipse equation since: \[ x^2 + 2y^2 = (\sqrt{2} \cos \theta)^2 + 2(\sin \theta)^2 = 2 \cos^2 \theta + 2 \sin^2 \theta = 2(\cos^2 \theta + \sin^2 \theta) = 2 \] ### Step 2: Substitute into the expression Now, substitute \( x \) and \( y \) into the expression \( x^2 + y^2 + \sqrt{2}xy - 1 \): \[ x^2 = 2 \cos^2 \theta, \quad y^2 = \sin^2 \theta, \quad xy = \sqrt{2} \cos \theta \sin \theta \] Thus, we have: \[ x^2 + y^2 + \sqrt{2}xy - 1 = 2 \cos^2 \theta + \sin^2 \theta + \sqrt{2}(\sqrt{2} \cos \theta \sin \theta) - 1 \] \[ = 2 \cos^2 \theta + \sin^2 \theta + 2 \cos \theta \sin \theta - 1 \] ### Step 3: Simplify the expression Now, simplify the expression: \[ = 2 \cos^2 \theta + \sin^2 \theta + 2 \cos \theta \sin \theta - 1 \] Combine \( 2 \cos^2 \theta + \sin^2 \theta \): \[ = (2 \cos^2 \theta + \sin^2 \theta) + 2 \cos \theta \sin \theta - 1 \] \[ = (2 \cos^2 \theta + \sin^2 \theta - 1) + 2 \cos \theta \sin \theta \] Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ = (2 \cos^2 \theta - 1 + \sin^2 \theta) + 2 \cos \theta \sin \theta \] \[ = 2 \cos^2 \theta - 1 + 1 - \cos^2 \theta + 2 \cos \theta \sin \theta \] \[ = \cos^2 \theta + 2 \cos \theta \sin \theta \] ### Step 4: Use trigonometric identities Now, we can express this in terms of a single angle: \[ = \cos^2 \theta + \sin 2\theta \] Using \( \cos^2 \theta = \frac{1 + \cos 2\theta}{2} \): \[ = \frac{1 + \cos 2\theta}{2} + \sin 2\theta \] \[ = \frac{1}{2} + \frac{\cos 2\theta}{2} + \sin 2\theta \] ### Step 5: Find the maximum value To find the maximum value of \( \frac{1}{2} + \frac{\cos 2\theta}{2} + \sin 2\theta \), we can rewrite it as: \[ = \frac{1}{2} + \frac{1}{2}(\cos 2\theta + 2\sin 2\theta) \] The maximum value of \( \cos 2\theta + 2\sin 2\theta \) can be found using the formula for the maximum of \( a \cos x + b \sin x \): \[ \sqrt{1^2 + 2^2} = \sqrt{5} \] Thus, the maximum value of \( \frac{1}{2} + \frac{1}{2} \sqrt{5} \) is: \[ \frac{1 + \sqrt{5}}{2} \] ### Final Answer The maximum value of \( x^2 + y^2 + \sqrt{2}xy - 1 \) is: \[ \frac{1 + \sqrt{5}}{2} \]

To find the maximum value of the expression \( x^2 + y^2 + \sqrt{2}xy - 1 \) given that \( (x, y) \) lies on the ellipse defined by the equation \( x^2 + 2y^2 = 2 \), we can follow these steps: ### Step 1: Parametrize the ellipse The equation of the ellipse can be rewritten in a parametric form. We can let: \[ x = \sqrt{2} \cos \theta, \quad y = \sqrt{1} \sin \theta \] This satisfies the ellipse equation since: ...
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|49 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos
  • EQAUTION OF STRAIGHT LINE AND ITS APPLICATION

    CENGAGE ENGLISH|Exercise DPP 3.2|13 Videos

Similar Questions

Explore conceptually related problems

If x^(2) + 9y^(2) = 1 , then minimum and maximum value of 3x^(2) - 27y^(2) + 24xy respectively

if y^(2)(y^(2)-6)+x^(2)-8x+24=0 , then maximum value of sqrt(y^(4)+x^(2)) is

If x^2+y^2=4 then find the maximum value of (x^3+y^3)/(x+y)

If real numbers x and y satisfy (x+5)^(2)+(y-12)^(2)=196 , then the maximum value of (x^(2)+y^(2))^((1)/(3)) is

If x is real, then the maximum value of y=2(a-x)(x+sqrt(x^2+b^2))

If (x+y)^(2)-(x-y)^(2)=28 , what is the value of xy?

If x and y are real number such that x^2 +2xy-y^2=6 , find the minimum value of (x^2+y^2)^2

If x+2y=2 and x^(2)-y^(2)=9 , what is the value of (x^(3)-2y^(3)-xy^(2)+2x^(2)y) ?

If 2x-3y=5 , what is the value of 4x^(2)-12xy+9y^(2) ?

CENGAGE ENGLISH-ELLIPSE -Single Correct Answer Type
  1. The distance between directrix of the ellipse (4x-8)^(2)+16y^(2)=(x+sq...

    Text Solution

    |

  2. A chord is drawn passing through P(2,2) on the ellipse (x^(2))/(25)+(y...

    Text Solution

    |

  3. If (x,y) lies on the ellipse x^(2)+2y^(3) = 2, then maximum value of x...

    Text Solution

    |

  4. If the eccentric angles of two points P and Q on the ellipse x^2/28+y^...

    Text Solution

    |

  5. P and Q are points on the ellipse x^2/a^2+y^2/b^2 =1 whose center is ...

    Text Solution

    |

  6. If eccentric angle of a point lying in the first quadrant on the ellip...

    Text Solution

    |

  7. Let P and Q be points of the ellipse 16 x^(2) +25y^(2) = 400 so that P...

    Text Solution

    |

  8. If the reflection of the ellipse ((x-4)^(2))/(16)+((y-3)^(2))/(9) =1 i...

    Text Solution

    |

  9. A point P moves on x-y plane such that PS +PS' = 4 where S(K,0) and S'...

    Text Solution

    |

  10. The ratio of the area enclosed by the locus of the midpoint of PS and ...

    Text Solution

    |

  11. Find the set of those value(s) of alpha for which (7-(5alpha)/4,alpha)...

    Text Solution

    |

  12. The coordinates of the vertices Ba n dC of a triangle A B C are (2,...

    Text Solution

    |

  13. PQ and QR are two focal chords of an ellipse and the eccentric angles ...

    Text Solution

    |

  14. the value of lambda for which the line 2x-8/3lambday=-3 is a normal to...

    Text Solution

    |

  15. If the length of the major axis intercepted between the tangent and no...

    Text Solution

    |

  16. How many tangents to the circle x^2 + y^2 = 3 are normal tothe ellips...

    Text Solution

    |

  17. An ellipse passes through the point (2,3) and its axes along the coord...

    Text Solution

    |

  18. If x cos alpha +y sin alpha = 4 is tangent to (x^(2))/(25) +(y^(2))/(9...

    Text Solution

    |

  19. If the normal at any point P of the ellipse (x^(2))/(16)+(y^(2))/(9) =...

    Text Solution

    |

  20. If the normal at any point P on the ellipse cuts the major and minor a...

    Text Solution

    |