Home
Class 12
MATHS
If e and e' are the eccentricities of th...

If `e and e'` are the eccentricities of the hyperbola `x^2/a^2-y^2/b^2=1 and y^2/b^2-x^2/a^2=1,` then the point `(1/e,1/(e'))` lies on the circle (A) `x^2+y^2=1` (B) `x^2+y^2=2` (C) `x^2+y^2=3` (D) `x^2+y^2=4`

A

`x^(2)+y^(2)=1`

B

`x^(2)+y^(2)=2`

C

`x^(2)+y^(2)=3`

D

`x^(2)+y^(2)=4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the eccentricities \( e \) and \( e' \) of the hyperbolas given by the equations \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) and \( \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \). Then, we will determine if the point \( \left( \frac{1}{e}, \frac{1}{e'} \right) \) lies on any of the given circles. ### Step 1: Find the eccentricity \( e \) of the first hyperbola The eccentricity \( e \) of a hyperbola in the form \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) is given by the formula: \[ e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{\frac{a^2 + b^2}{a^2}} \] ### Step 2: Find the eccentricity \( e' \) of the second hyperbola The second hyperbola is given by \( \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \). This can be rewritten as: \[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 \] This is the equation of the conjugate hyperbola. The eccentricity \( e' \) of the conjugate hyperbola is given by: \[ e' = \sqrt{1 + \frac{a^2}{b^2}} = \sqrt{\frac{b^2 + a^2}{b^2}} \] ### Step 3: Calculate \( \frac{1}{e} \) and \( \frac{1}{e'} \) Now, we can find \( \frac{1}{e} \) and \( \frac{1}{e'} \): \[ \frac{1}{e} = \frac{1}{\sqrt{1 + \frac{b^2}{a^2}}} = \frac{a}{\sqrt{a^2 + b^2}} \] \[ \frac{1}{e'} = \frac{1}{\sqrt{1 + \frac{a^2}{b^2}}} = \frac{b}{\sqrt{a^2 + b^2}} \] ### Step 4: Check if the point \( \left( \frac{1}{e}, \frac{1}{e'} \right) \) lies on a circle Now we need to check if the point \( \left( \frac{1}{e}, \frac{1}{e'} \right) = \left( \frac{a}{\sqrt{a^2 + b^2}}, \frac{b}{\sqrt{a^2 + b^2}} \right) \) lies on any of the circles given by the equations. Calculate \( \left( \frac{1}{e} \right)^2 + \left( \frac{1}{e'} \right)^2 \): \[ \left( \frac{1}{e} \right)^2 + \left( \frac{1}{e'} \right)^2 = \left( \frac{a}{\sqrt{a^2 + b^2}} \right)^2 + \left( \frac{b}{\sqrt{a^2 + b^2}} \right)^2 \] \[ = \frac{a^2}{a^2 + b^2} + \frac{b^2}{a^2 + b^2} = \frac{a^2 + b^2}{a^2 + b^2} = 1 \] ### Conclusion Since \( \left( \frac{1}{e}, \frac{1}{e'} \right) \) satisfies the equation \( x^2 + y^2 = 1 \), we conclude that the point lies on the circle described by this equation. Thus, the correct answer is: **(A) \( x^2 + y^2 = 1 \)**

To solve the problem, we need to find the eccentricities \( e \) and \( e' \) of the hyperbolas given by the equations \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) and \( \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \). Then, we will determine if the point \( \left( \frac{1}{e}, \frac{1}{e'} \right) \) lies on any of the given circles. ### Step 1: Find the eccentricity \( e \) of the first hyperbola The eccentricity \( e \) of a hyperbola in the form \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) is given by the formula: \[ e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{\frac{a^2 + b^2}{a^2}} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Length of common tangents to the hyperbolas x^2/a^2-y^2/b^2=1 and y^2/a^2-x^2/b^2=1 is

If e_(1) and e_(2) are eccentricities of the hyperbolas xy=c^(2) and x^2-y^(2)=a^(2) then e_(1)^(2)+e_(2)^(2)=

If e and e_(1) , are the eccentricities of the hyperbolas xy=c^(2) and x^(2)-y^(2)=c^(2) , then e^(2)+e_(1)^(2) is equal to

If e' is the eccentricity of the ellipse (x^(2))/(a^(2)) + (y^(2))/(b^(2)) =1 (a gt b) , then

If e_1 and e_2 are eccentricities of x^2 /18 + y^2 /4 = 1 and x^2 /9 - y^2 /4 = 1 respectively and if the point (e_1, e_2) lies on ellipse 15x^2 + 3y^2 = k . Then tha value of k

If e is eccentricity of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 (where,a lt b), then

If e is the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and theta is the angle between the asymptotes, then cos.(theta)/(2) is equal to

If the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1and(y^(2))/(b^(2))-(x^(2))/(a^(2))=1" are "e_(1)ande_(2) respectively then prove that : (1)/(e_(1)^(2))+(1)/(e_(2)^(2))=1

If e_1a n d\ e_2 are respectively the eccentricities of the ellipse (x^2)/(18)+(y^2)/4=1 and the hyperbola (x^2)/9-(y^2)/4=1, then write the value of 2e_1^ 2+e_2^ 2dot

If the eccentricity of the hyperbola conjugate to the hyperbola (x^2)/(4)-(y^2)/(12)=1 is e, then 3e^2 is equal to: