Home
Class 12
MATHS
The point (3tan (theta +60^(@)),2 tan(th...

The point `(3tan (theta +60^(@)),2 tan(theta +30^(@)))` lies on the conic, then its centre is `(theta` is the parameter)

A

`(-3sqrt(3),2sqrt(3))`

B

`(3sqrt(3),-2sqrt(3))`

C

`(-3sqrt(3),-2sqrt(3))`

D

(0,0)

Text Solution

AI Generated Solution

The correct Answer is:
To find the center of the conic given the point \((3 \tan(\theta + 60^\circ), 2 \tan(\theta + 30^\circ))\), we can follow these steps: ### Step 1: Define the Point Let: \[ x = 3 \tan(\theta + 60^\circ) \] \[ y = 2 \tan(\theta + 30^\circ) \] ### Step 2: Express Tangents in Terms of x and y From the definitions above, we can express \(\tan(\theta + 60^\circ)\) and \(\tan(\theta + 30^\circ)\) as: \[ \tan(\theta + 60^\circ) = \frac{x}{3} \] \[ \tan(\theta + 30^\circ) = \frac{y}{2} \] ### Step 3: Use the Tangent Subtraction Formula We know that: \[ \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \] Let \(A = \theta + 60^\circ\) and \(B = \theta + 30^\circ\). Then: \[ \tan((\theta + 60^\circ) - (\theta + 30^\circ)) = \tan(30^\circ) = \frac{1}{\sqrt{3}} \] Using the formula: \[ \tan(30^\circ) = \frac{\tan(\theta + 60^\circ) - \tan(\theta + 30^\circ)}{1 + \tan(\theta + 60^\circ) \tan(\theta + 30^\circ)} \] Substituting the expressions for \(\tan(\theta + 60^\circ)\) and \(\tan(\theta + 30^\circ)\): \[ \frac{1}{\sqrt{3}} = \frac{\frac{x}{3} - \frac{y}{2}}{1 + \frac{x}{3} \cdot \frac{y}{2}} \] ### Step 4: Cross Multiply Cross multiplying gives: \[ 1 + \frac{xy}{6} = \sqrt{3} \left(\frac{x}{3} - \frac{y}{2}\right) \] This simplifies to: \[ 1 + \frac{xy}{6} = \frac{\sqrt{3}x}{3} - \frac{\sqrt{3}y}{2} \] ### Step 5: Rearranging the Equation Rearranging gives: \[ \frac{xy}{6} + \frac{\sqrt{3}y}{2} - \frac{\sqrt{3}x}{3} + 1 = 0 \] Multiplying through by 6 to eliminate the fraction: \[ xy + 3\sqrt{3}y - 2\sqrt{3}x + 6 = 0 \] ### Step 6: Identify the Center This is a conic equation in the form: \[ Ax + By + C = 0 \] To find the center, we can rewrite it as: \[ x - \frac{3\sqrt{3}}{2} + y - 2\sqrt{3} + 24 = 0 \] The center \((h, k)\) of the conic can be found by identifying: \[ h = \frac{3\sqrt{3}}{2}, \quad k = 2\sqrt{3} \] ### Final Answer Thus, the center of the conic is: \[ \left(-\frac{3\sqrt{3}}{2}, 2\sqrt{3}\right) \]

To find the center of the conic given the point \((3 \tan(\theta + 60^\circ), 2 \tan(\theta + 30^\circ))\), we can follow these steps: ### Step 1: Define the Point Let: \[ x = 3 \tan(\theta + 60^\circ) \] \[ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: 3tan(theta-15^(@))=tan(theta+15^(@))

If m tan (theta - 30^(@))= n tan (theta + 120^(@)), show that cos 2 theta = (m +n)/(2 (m -n)).

theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " then " tan theta=

tan theta + 2 tan 2 theta + 4 tan 4 theta + 8 cot 8 theta = cot theta.

If tan theta + tan (60^@+ theta) + tan (120^@ + theta)=3 then theta =

Solve: tan4 theta = tan2theta

If tan^2 theta = 1-e^2 then the value of sec theta + tan^3 theta cosec theta

General solution of the equation tan theta + tan 4 theta + tan 7 theta = tan theta cdot tan 4 theta cdot tan 7 theta "is" theta =

If sin theta = 12/13 and theta lies in the second quadrant, find the value of sec theta+tan theta .

If 1+ tan^(2) theta = sec^(2) theta then find (sec theta + tan theta)