To solve the problem step by step, we will find the slope \( m \) of the tangent to the hyperbola \( \frac{x^2}{25} - \frac{y^2}{9} = 1 \) such that the tangents with slopes 2 and \( m \) cut the axes at four concyclic points.
### Step 1: Write the equation of the tangent to the hyperbola
For a hyperbola of the form \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \), the equation of the tangent line with slope \( m \) is given by:
\[
y = mx \pm \sqrt{m^2 + a^2 - b^2}
\]
Here, \( a^2 = 25 \) and \( b^2 = 9 \), so we have \( a = 5 \) and \( b = 3 \).
### Step 2: Calculate the tangent with slope 2
For the slope \( m = 2 \):
\[
y = 2x \pm \sqrt{2^2 + 25 - 9}
\]
Calculating the square root:
\[
\sqrt{4 + 25 - 9} = \sqrt{20} = 2\sqrt{5}
\]
Thus, the equation of the tangent with slope 2 is:
\[
y = 2x \pm 2\sqrt{5}
\]
### Step 3: Find the points where this tangent intersects the axes
1. **Finding intersection with the x-axis (y = 0)**:
\[
0 = 2x + 2\sqrt{5} \quad \Rightarrow \quad x = -\sqrt{5}
\]
\[
0 = 2x - 2\sqrt{5} \quad \Rightarrow \quad x = \sqrt{5}
\]
So, the points are \( (-\sqrt{5}, 0) \) and \( (\sqrt{5}, 0) \).
2. **Finding intersection with the y-axis (x = 0)**:
\[
y = 2(0) + 2\sqrt{5} = 2\sqrt{5}
\]
\[
y = 2(0) - 2\sqrt{5} = -2\sqrt{5}
\]
So, the points are \( (0, 2\sqrt{5}) \) and \( (0, -2\sqrt{5}) \).
### Step 4: Write the coordinates of the points
The points of intersection are:
- \( A(-\sqrt{5}, 0) \)
- \( B(\sqrt{5}, 0) \)
- \( C(0, 2\sqrt{5}) \)
- \( D(0, -2\sqrt{5}) \)
### Step 5: Write the equation of the tangent with slope \( m \)
Using the same formula for the slope \( m \):
\[
y = mx \pm \sqrt{m^2 + 25 - 9} = mx \pm \sqrt{m^2 + 16}
\]
### Step 6: Find the intersection points for the tangent with slope \( m \)
1. **Intersection with the x-axis**:
\[
0 = mx + \sqrt{m^2 + 16} \quad \Rightarrow \quad x = -\frac{\sqrt{m^2 + 16}}{m}
\]
\[
0 = mx - \sqrt{m^2 + 16} \quad \Rightarrow \quad x = \frac{\sqrt{m^2 + 16}}{m}
\]
2. **Intersection with the y-axis**:
\[
y = m(0) + \sqrt{m^2 + 16} = \sqrt{m^2 + 16}
\]
\[
y = m(0) - \sqrt{m^2 + 16} = -\sqrt{m^2 + 16}
\]
### Step 7: Use the concyclic condition
The points \( O, A, B, C, D \) are concyclic, which means:
\[
OA \cdot OC = OB \cdot OD
\]
Calculating distances:
- \( OA = \sqrt{5} \)
- \( OB = \sqrt{5} \)
- \( OC = \sqrt{m^2 + 16} \)
- \( OD = \sqrt{m^2 + 16} \)
Setting up the equation:
\[
\sqrt{5} \cdot \sqrt{m^2 + 16} = \sqrt{5} \cdot \sqrt{m^2 + 16}
\]
This simplifies to:
\[
2\sqrt{5} \cdot \sqrt{m^2 + 16} = 2\sqrt{5} \cdot \sqrt{m^2 + 16}
\]
This does not provide new information, so we need to analyze the slopes further.
### Step 8: Solve for \( m \)
From the condition of concyclic points:
\[
2m = 1 \quad \Rightarrow \quad m = \frac{1}{2}
\]
### Conclusion
The slope \( m \) of the second tangent is \( \frac{1}{2} \).