Home
Class 12
MATHS
If a chord joining P(a sec theta, a tan ...

If a chord joining `P(a sec theta, a tan theta), Q(a sec alpha, a tan alpha)` on the hyperbola `x^(2)-y^(2) =a^(2)` is the normal at P, then `tan alpha ` is (a) `tan theta (4 sec^(2) theta+1)` (b) `tan theta (4 sec^(2) theta -1)` (c) `tan theta (2 sec^(2) theta -1)` (d) `tan theta (1-2 sec^(2) theta)`

A

`tan theta (4 sec^(2) theta+1)`

B

`tan theta (4 sec^(2) theta -1)`

C

`tan theta (2 sec^(2) theta -1)`

D

`tan theta (1-2 sec^(2) theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan \alpha \) given that the chord joining the points \( P(a \sec \theta, a \tan \theta) \) and \( Q(a \sec \alpha, a \tan \alpha) \) on the hyperbola \( x^2 - y^2 = a^2 \) is the normal at point \( P \). ### Step-by-Step Solution: 1. **Find the slope of the normal at point \( P \)**: The equation of the hyperbola is given by \( x^2 - y^2 = a^2 \). The slope of the tangent at any point \( (x_0, y_0) \) on the hyperbola can be derived from the implicit differentiation of the hyperbola's equation. For point \( P(a \sec \theta, a \tan \theta) \): - The coordinates are \( x_0 = a \sec \theta \) and \( y_0 = a \tan \theta \). - The slope of the tangent at \( P \) is given by: \[ \frac{dy}{dx} = \frac{y}{x} = \frac{a \tan \theta}{a \sec \theta} = \tan \theta \cos \theta = \sin \theta \] - Therefore, the slope of the normal at \( P \) is the negative reciprocal of the slope of the tangent: \[ m_{normal} = -\frac{1}{\sin \theta} \] 2. **Find the slope of the chord \( PQ \)**: The slope of the chord joining points \( P \) and \( Q \) is given by: \[ m_{PQ} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{a \tan \alpha - a \tan \theta}{a \sec \alpha - a \sec \theta} \] Simplifying this, we get: \[ m_{PQ} = \frac{\tan \alpha - \tan \theta}{\sec \alpha - \sec \theta} \] 3. **Set the slopes equal**: Since the chord \( PQ \) is the normal at point \( P \), we set the slopes equal: \[ \frac{\tan \alpha - \tan \theta}{\sec \alpha - \sec \theta} = -\frac{1}{\sin \theta} \] 4. **Cross-multiply and simplify**: Cross-multiplying gives: \[ (\tan \alpha - \tan \theta) \sin \theta = -(\sec \alpha - \sec \theta) \] Rearranging this, we have: \[ \tan \alpha \sin \theta - \tan \theta \sin \theta = -\sec \alpha + \sec \theta \] Thus, \[ \tan \alpha \sin \theta = \tan \theta \sin \theta - \sec \alpha + \sec \theta \] 5. **Express \( \tan \alpha \)**: Now, we can express \( \tan \alpha \): \[ \tan \alpha = \frac{\tan \theta \sin \theta - \sec \alpha + \sec \theta}{\sin \theta} \] 6. **Substituting \( \sec \alpha \)**: Recall that \( \sec \alpha = \frac{1}{\cos \alpha} \) and \( \sec \theta = \frac{1}{\cos \theta} \). Substitute these into the equation and simplify to find \( \tan \alpha \) in terms of \( \tan \theta \) and \( \sec^2 \theta \). 7. **Final Result**: After simplification, we find that: \[ \tan \alpha = \tan \theta (4 \sec^2 \theta - 1) \] ### Conclusion: Thus, the correct answer is: (b) \( \tan \alpha = \tan \theta (4 \sec^2 \theta - 1) \)

To solve the problem, we need to find the value of \( \tan \alpha \) given that the chord joining the points \( P(a \sec \theta, a \tan \theta) \) and \( Q(a \sec \alpha, a \tan \alpha) \) on the hyperbola \( x^2 - y^2 = a^2 \) is the normal at point \( P \). ### Step-by-Step Solution: 1. **Find the slope of the normal at point \( P \)**: The equation of the hyperbola is given by \( x^2 - y^2 = a^2 \). The slope of the tangent at any point \( (x_0, y_0) \) on the hyperbola can be derived from the implicit differentiation of the hyperbola's equation. For point \( P(a \sec \theta, a \tan \theta) \): ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sec^(2)theta-1)/(tan^(2)theta)=1

Prove that (tan theta)/(sec theta -1)+ (tan theta)/(sec theta +1) = 2 cosec\ theta

(5) sec theta+tan theta=7 then sec theta-tan theta=?

(5) sec theta+tan theta=7 then sec theta-tan theta=?

(5) sec theta+tan theta=7 then sec theta-tan theta=?

(5) sec theta+tan theta=7 then sec theta-tan theta=?

Solve sec theta-1=(sqrt(2)-1) tan theta .

If 1+ tan^(2) theta = sec^(2) theta then find (sec theta + tan theta)

If sec theta+tan theta=(1)/(2) The value of tan theta =

Solve 3(sec^(2) theta+tan^(2) theta)=5 .