Home
Class 12
MATHS
Let C1 and C2 are circles defined by x...

Let `C_1 and C_2` are circles defined by `x^2+y^2 -20x+64=0` and `x^2+y^2+30x +144=0`. The length of the shortest line segment PQ that is tangent to `C_1` at P and to `C_2` at Q is

A

20

B

15

C

22

D

27

Text Solution

Verified by Experts

The correct Answer is:
1

The centers are `(10,0)` and `(-15,0)`
and the radii are `r_(1)=6` and `r_(2)=9`
Also, `d=25,r_(1)+r_(2) lt d`.

So, the circle are neither intersecting nor touching. Therefore,
`PQ= sqrt(d^(2)-(r_(1)+r_(2))^(2))`
`=sqrt(625-225)`
`=20`
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    CENGAGE ENGLISH|Exercise Multiple Correct Anser Type|29 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise Linked Comprehension Type (For Problem 1-3)|3 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 4.20|1 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Matrix|4 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos

Similar Questions

Explore conceptually related problems

Let C_1 and C_2 be two circles whose equations are x^2+y^2-2x=0 and x^2+y^2+2x=0 and P(lambda, lambda) is a variable point . List 1 a) P lies inside C1 ​ but outside C2 ​ 2)P lies inside C2 ​ but outside C1 ​ c)P lies outside C1 ​ but outside C2 ​ d)P does not lie inside C2 ​ List 2 p)λ ϵ (−∞,−1)∪(0,∞) q)λ ϵ (−∞,−1)∪(1,∞) r)λ ϵ (−1,0) s)λ ϵ (0,1)

The line L_(1)-=3x-4y+1=0 touches the circles C_(1) and C_(2) . Centers of C_(1) and C_(2) are A_(1)(1, 2) and A_(2)(3, 1) respectively Then, the length (in units) of the transverse common tangent of C_(1) and C_(2) is equal to

If the lengths of the tangents drawn from P to the circles x^(2)+y^(2)-2x+4y-20=0 and x^(2) +y^(2)-2x-8y+1=0 are in the ratio 2:1, then the locus P is

Let C_1 and C_2 be parabolas x^2 = y - 1 and y^2 = x-1 respectively. Let P be any point on C_1 and Q be any point C_2 . Let P_1 and Q_1 be the reflection of P and Q, respectively w.r.t the line y = x then prove that P_1 lies on C_2 and Q_1 lies on C_1 and PQ >= [P P_1, Q Q_1] . Hence or otherwise , determine points P_0 and Q_0 on the parabolas C_1 and C_2 respectively such that P_0 Q_0 <= PQ for all pairs of points (P,Q) with P on C_1 and Q on C_2

Let C_1 and C_2 be respectively, the parabolas x^2=y-1 and y^2=x-1 Let P be any point on C_1 and Q be any point on C_2 . Let P_1 and Q_1 be the refelections of P and Q, respectively with respect to the line y=x. If the point p(pi,pi^2+1) and Q(mu^2+1,mu) then P_1 and Q_1 are

Let C_1 and C_2 be respectively, the parabolas x^2=y-1 and y^2=x-1 Let P be any point on C_1 and Q be any point on C_2 . Let P_1 and Q_1 be the refelections of P and Q, respectively with respect to the line y=x. Arithemetic mean of PP_1 and Q Q_1 is always less than

If C_1,C_2,a n dC_3 belong to a family of circles through the points (x_1,y_2)a n d(x_2, y_2) prove that the ratio of the length of the tangents from any point on C_1 to the circles C_2a n dC_3 is constant.

The length of the tangent to the circle x^(2)+y^(2)-2x-y-7=0 from (-1, -3), is

Consider the circle x^(2)+y^(2)_4x-2y+c=0 whose centre is A(2,1). If the point P(10,7) is such that the line segment PA meets the circle in Q with PQ=5 then c=

Let the line segment joining the centres of the circles x^(2)-2x+y^(2)=0 and x^(2)+y^(2)+4x+8y+16=0 intersect the circles at P and Q respectively. Then the equation of the circle with PQ as its diameter is

CENGAGE ENGLISH-CIRCLE -Excercises (Single Correct Answer Type)
  1. Tangent are drawn to the circle x^2+y^2=1 at the points where it is me...

    Text Solution

    |

  2. If the line xcostheta=2 is the equation of a transverse common tangent...

    Text Solution

    |

  3. Let C1 and C2 are circles defined by x^2+y^2 -20x+64=0 and x^2+y^2+...

    Text Solution

    |

  4. The circles having radii r1a n dr2 intersect orthogonally. The length ...

    Text Solution

    |

  5. The two circles which pass through (0,a)a n d(0,-a) and touch the line...

    Text Solution

    |

  6. Locus of the centre of the circle which touches x^2+y^2 - 6x-6y+14 =0 ...

    Text Solution

    |

  7. If the chord of contact of tangents from a point P to a given circle p...

    Text Solution

    |

  8. If the angle of intersection of the circle x^2+y^2+x+y=0 and x^2+y^2+x...

    Text Solution

    |

  9. The coordinates of two points Pa n dQ are (x1,y1)a n d(x2,y2)a n dO is...

    Text Solution

    |

  10. If the circumference of the circle x^2 + y^2 + 8x + 8y - b = 0 is bise...

    Text Solution

    |

  11. Equation of the circle which cuts the circle x^2+y^2+2x+ 4y -4=0 and ...

    Text Solution

    |

  12. The minimum radius of the circle which contains the three circles, x^...

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. If a circle passes through the point (a, b) and cuts the circle x^2 + ...

    Text Solution

    |

  15. The centre of the smallest circle touching the circles x^2+ y^2-2y -3=...

    Text Solution

    |

  16. Two circle with radii r(1) and r(2) respectively touch each other exte...

    Text Solution

    |

  17. Consider points A(sqrt13,0) and B(2sqrt13,0) lying on x-axis. These po...

    Text Solution

    |

  18. The common chord of the circle x^2+y^2+6x+8y-7=0 and a circle passing ...

    Text Solution

    |

  19. If the circumference of the circle x^2+y^2+8x+8y-b=0 is bisected by th...

    Text Solution

    |

  20. The equation of the circle passing through the point of intersection o...

    Text Solution

    |