Home
Class 12
MATHS
If P(theta) and Q((pi)/(2)+theta) are tw...

If `P(theta) and Q((pi)/(2)+theta)` are two points on the ellipse `(x^(2))/(9)+(y^(2))/(4)=1` then find the locus of midpoint of PQ

Text Solution

AI Generated Solution

The correct Answer is:
To find the locus of the midpoint of the points \( P(\theta) \) and \( Q\left(\frac{\pi}{2} + \theta\right) \) on the ellipse given by the equation \[ \frac{x^2}{9} + \frac{y^2}{4} = 1, \] we can follow these steps: ### Step 1: Parametrize the Points on the Ellipse The standard parametric equations for the ellipse are: \[ x = 3 \cos \theta, \quad y = 2 \sin \theta. \] Thus, for point \( P(\theta) \), we have: \[ P(\theta) = (3 \cos \theta, 2 \sin \theta). \] For point \( Q\left(\frac{\pi}{2} + \theta\right) \), we substitute \( \theta \) with \( \frac{\pi}{2} + \theta \): \[ Q\left(\frac{\pi}{2} + \theta\right) = \left(3 \cos\left(\frac{\pi}{2} + \theta\right), 2 \sin\left(\frac{\pi}{2} + \theta\right)\right). \] Using the trigonometric identities, we find: \[ \cos\left(\frac{\pi}{2} + \theta\right) = -\sin \theta, \quad \sin\left(\frac{\pi}{2} + \theta\right) = \cos \theta. \] Thus, \[ Q\left(\frac{\pi}{2} + \theta\right) = (-3 \sin \theta, 2 \cos \theta). \] ### Step 2: Find the Midpoint of PQ The midpoint \( M \) of points \( P \) and \( Q \) is given by: \[ M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right). \] Substituting the coordinates of \( P \) and \( Q \): \[ M = \left(\frac{3 \cos \theta - 3 \sin \theta}{2}, \frac{2 \sin \theta + 2 \cos \theta}{2}\right). \] This simplifies to: \[ M = \left(\frac{3}{2}(\cos \theta - \sin \theta), \sin \theta + \cos \theta\right). \] ### Step 3: Express the Coordinates in Terms of \( h \) and \( k \) Let: \[ h = \frac{3}{2}(\cos \theta - \sin \theta), \quad k = \sin \theta + \cos \theta. \] ### Step 4: Eliminate \( \theta \) To find the relationship between \( h \) and \( k \), we can express \( \cos \theta \) and \( \sin \theta \) in terms of \( h \) and \( k \). From \( k = \sin \theta + \cos \theta \), we can square both sides: \[ k^2 = (\sin \theta + \cos \theta)^2 = \sin^2 \theta + \cos^2 \theta + 2 \sin \theta \cos \theta = 1 + 2 \sin \theta \cos \theta. \] Thus, \[ 2 \sin \theta \cos \theta = k^2 - 1. \] From \( h = \frac{3}{2}(\cos \theta - \sin \theta) \), we can also square this: \[ h^2 = \left(\frac{3}{2}\right)^2 (\cos \theta - \sin \theta)^2 = \frac{9}{4}(\cos^2 \theta - 2 \sin \theta \cos \theta + \sin^2 \theta) = \frac{9}{4}(1 - 2 \sin \theta \cos \theta). \] Substituting \( 2 \sin \theta \cos \theta \): \[ h^2 = \frac{9}{4}(1 - (k^2 - 1)) = \frac{9}{4}(2 - k^2). \] ### Step 5: Final Equation Now we have: \[ h^2 = \frac{9}{4}(2 - k^2). \] Rearranging gives: \[ \frac{h^2}{9} + \frac{k^2}{4} = 2. \] Thus, the locus of the midpoint \( M \) is given by the equation: \[ \frac{x^2}{9} + \frac{y^2}{4} = 2. \]

To find the locus of the midpoint of the points \( P(\theta) \) and \( Q\left(\frac{\pi}{2} + \theta\right) \) on the ellipse given by the equation \[ \frac{x^2}{9} + \frac{y^2}{4} = 1, \] we can follow these steps: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum length of chord of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then find the locus of midpoint of PQ

if P(theta) and Q(pi/2 +theta) are two points on the ellipse x^2/a^2+y^@/b^2=1 , locus ofmid point of PQ is

If p(theta) is a point on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 (agtb) then find its coresponding point

If P is a point on the ellipse (x^(2))/(36)+(y^(2))/(9)=1 , S and S ’ are the foci of the ellipse then find SP + S^1P

Find the equation of tangent at the point theta=(pi)/(3) to the ellipse (x^(2))/(9)+(y^(2))/(4) = 1

If P(theta),Q(theta+pi/2) are two points on the ellipse x^2/a^2+y^2/b^2=1 and α is the angle between normals at P and Q, then

If P is the point (1,0) and Q is any point on the parabola y^(2) = 8x then the locus of mid - point of PQ is

A variable tangent to the circle x^(2)+y^(2)=1 intersects the ellipse (x^(2))/(4)+(y^(2))/(2)=1 at point P and Q. The lous of the point of the intersection of tangents to the ellipse at P and Q is another ellipse. Then find its eccentricity.

The distance of the point 'theta' on the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 from a focus, is

Tangents are drawn from any point on the hyperbola (x^2)/9-(y^2)/4=1 to the circle x^2+y^2=9 . Find the locus of the midpoint of the chord of contact.