Home
Class 12
MATHS
If the straight line xcosalpha+ysinalpha...

If the straight line `xcosalpha+ysinalpha=p` touches the curve `(x^2)/(a^2)+(y^2)/(b^2)=1` , then prove that `a^2cos^2alpha+b^2sin^2alpha=p^2dot`

Text Solution

Verified by Experts

We know that the line y=mc +c is a tangent to the ellipse
`(x^(2))/(a^(2))+(y^(2))/(b^(2))=1`
if `C^(2)=a^(2)m^(2)+b^(2)`
Then comparing the given line `x cos theta+y sin alpha=p` with y=mx +c, we have c=`p//sin alpha,m=-cos alpha//sin alpha`
So, the given line will be a tangent if
`(p^(2))/(sin^(2)alpha)=a^(2)(cos^(2)alpha)/(sin^(2)alpha)+b^(2)`
or `p^(2)=a^(2)cos^(2)alpha+b^(2)sin^(2)alpha)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2\ cos^2alpha+b^2\ sin^2alpha=p^2 .

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)-(y^2)/(b^2)=1 , then p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve x y=a^2, then prove that p^2=4a^2cosalphasinalphadot

If the line x cosalpha + y sin alpha = P touches the curve 4x^3=27ay^2 , then P/a=

If the line x Cos alpha+y Sin alpha=p touches x^(2)/a^(2)-y^(2)/b^(2)=1 then a^(2) Cos^(2)alpha-b^(2) Sin^(2)alpha=

Find the value of p so that the straight line x cos alpha + y sin alpha - p may touch the circle x^(2) + y^(2)-2ax cos alpha - 2ay sin alpha = 0 .

Find the condition that the line x cos alpha+y sin alpha=p may touch the curve ((x)/(a))^(m)+((y)/(b))^(m)=1

The line x cos alpha +y sin alpha =p is tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1. if

The line x cos alpha + y sin alpha =p is tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1. if

If the line y cos alpha = x sin alpha +a cos alpha be a tangent to the circle x^(2)+y^(2)=a^(2) , then