Home
Class 12
MATHS
The eccentricity of the locus of point (...

The eccentricity of the locus of point `(3h+2,k),` where `(h , k)` lies on the circle `x^2+y^2=1` , is (a) `1/3` (b) `(sqrt(2))/3` (c) `(2sqrt(2))/3` (d) `1/(sqrt(3))`

A

`1//3`

B

`sqrt(2)//3`

C

`2sqrt(2)//3`

D

`1//sqrt(3)`

Text Solution

AI Generated Solution

To find the eccentricity of the locus of the point \((3h + 2, k)\) where \((h, k)\) lies on the circle \(x^2 + y^2 = 1\), we can follow these steps: ### Step 1: Understand the given circle The equation of the circle is given by: \[ x^2 + y^2 = 1 \] This means that any point \((h, k)\) on this circle satisfies: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The eccentricity of the locus of point (2h+2,k), where (h , k) lies on the circle x^2+y^2=1 , is 1/3 (b) (sqrt(2))/3 (c) (2sqrt(2))/3 (d) 1/(sqrt(3))

If 4\ cos^(-1)x+sin^(-1)x=pi , then the value of x is (a) 3/2 (b) 1/(sqrt(2)) (c) (sqrt(3))/2 (d) 2/(sqrt(3))

If theta=pi/3, then the volume of pyramid is 1/(sqrt(3)) (b) 1/(3sqrt(2)) (c) 1/(2sqrt(3)) (d) 1/(sqrt(2))

The eccentricity of the ellipse 4x^2+9y^2=36 is a. 1/(2sqrt(3)) b. 1/(sqrt(3)) c. (sqrt(5))/3 d. (sqrt(5))/6

The eccentricity of the ellipse 4x^2+9y^2=36 is a. 1/(2sqrt(3)) b. 1/(sqrt(3)) c. (sqrt(5))/3 d. (sqrt(5))/6

The eccentricity of the hyperbola x^2-4y^2=1 is a. (sqrt(3))/2 b. (sqrt(5))/2 c. 2/(sqrt(3)) d. 2/(sqrt(5))

The value of sin(1/4sin^(-1)((sqrt(63))/8)) is (a) 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

The rationalisation factor of 2+sqrt(3) is (a) 2-sqrt(3) (b) sqrt(2)+3 (c) sqrt(2)-3 (d) sqrt(3)-2

The line 2x-y+1=0 is tangent to the circle at the point (2, 5) and the center of the circle lies on x-2y=4. The radius of the circle is (a) 3sqrt(5) (b) 5sqrt(3) (c) 2sqrt(5) (d) 5sqrt(2)

The rationalisation factor of sqrt(3) is (a) -sqrt(3) (b) 1/(sqrt(3)) (c) 2sqrt(3) (d) -2sqrt(3)