Home
Class 12
MATHS
If the line y=mx+c is a tangent to the e...

If the line y=mx+c is a tangent to the ellipse `x^(2)+2y^(2)=4`, then the minimum possible value of `c` is (a) `-sqrt(2)` (b) `sqrt(2)` (c) `2` (d) `1`

A

`-sqrt(2)`

B

`sqrt(2)`

C

2

D

1

Text Solution

Verified by Experts

Using condition of tangency, we get
`c^(2)=4m^(2)+2ge2AA m in R`
`:.c^(2)ge2`
`rArr|c|gesqrt(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If y = mx + c is a tangent to the ellipse x^(2) + 2y^(2) = 6 , them c^(2) =

If the line y=2x+c is a tangent to the circle x^(2)+y^(2)=5 then a value of c is

If the line y = 3x + c is a tangent to x^(2) + y^(2) = 4 then the value of c is

If the line y=x+sqrt(3) touches the ellipse (x^(2))/(4)+(y^(2))/(1)=1 then the point of contact is

3x + 4y = 12 sqrt2 is the tangent to the ellipse x^2/a^2 + y^2/9 = 1 then the distance between focii of ellipse is-

The line y=mx+1 is a tangent to the curve y^2=4x if the value of m is(A) 1 (B) 2(C) 3(D) 1/2.

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

The line y=mx+1 is a tangent to the parabola y^2 = 4x if (A) m=1 (B) m=2 (C) m=4 (D) m=3

The slopes of the common tangents of the ellipse (x^2)/4+(y^2)/1=1 and the circle x^2+y^2=3 are +-1 (b) +-sqrt(2) (c) +-sqrt(3) (d) none of these