Home
Class 12
MATHS
The length of the sides of the square wh...

The length of the sides of the square which can be made by four perpendicular tangents `P Qa n dP R` are drawn to the ellipse `(x^2)/4+(y^2)/9=1` . Then the angle subtended by `Q R` at the origin is `tan^(-1)(sqrt(6))/(65)` (b) `tan^(-1)(4sqrt(6))/(65)` `tan^(-1)(8sqrt(6))/(65)` (d) `tan^(-1)(48sqrt(6))/(455)`

A

`tan^(-1).(sqrt(6))/(65)`

B

`tan^(-1).(4sqrt(6))/(65)`

C

`tan^(-1).(8sqrt(2))/(65)`

D

`tan^(-1).(48sqrt(6))/(455)`

Text Solution

Verified by Experts

The equation of Qr is T=o (chord of contact)
`(8x)/(4)+(27y)/(9)=1`
or 2x+3y=1
Now, the equation or the pair of lines passing through the origin and point Q and R is given by
`((x^(2))/(4)+(y^(2))/(9))=(2x+3y)^(2)` [ Making the equation of ellispe homogeneous using (1)]
or `9x^(2)+4y^(2)=36(4x^(2)+12xy+9y^(2))`
or `135x^(2)+432xy+320y^(2)=0`
Therefore, the required angle is
`tan^(-1).(2sqrt(216^(2)-135xx320))/(455)=tan^(-1).(8sqrt(2916-2700))/(455)`
`=tan^(-1).(8sqrt(216))/(455)=tan^(-1).(48sqrt(6))/(455)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If from a point P , tangents P Qa n dP R are drawn to the ellipse (x^2)/2+y^2=1 so that the equation of Q R is x+3y=1, then find the coordinates of Pdot

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

tan^-1 [(1)/(sqrt(x^2-1))]

Evaluate: tan^(- 1)(-1/(sqrt(3)))+tan^(- 1)(-sqrt(3))+tan^(- 1)(sin(-pi/2))

Prove: tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/sqrt(5))

tan^(-1)((1)/(1+2))+tan^(-1)((1)/(1+6))+tan^(-1)(k)=tan^(-1)4 -(pi)/(4) then k is

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then

A normal to parabola, whose inclination is 30^(@) , cuts it again at an angle of (a) tan^(-1)((sqrt(3))/(2)) (b) tan^(-1)((2)/(sqrt(3))) (c) tan^(-1)(2sqrt(3)) (d) tan^(-1)((1)/(2sqrt(3)))