Home
Class 12
MATHS
The line y=m x-((a^2-b^2)m)/(sqrt(a^2+b^...

The line `y=m x-((a^2-b^2)m)/(sqrt(a^2+b^2m^2))` is normal to the ellise `(x^2)/(a^2)+(y^2)/(b^2)=1` for all values of `m` belonging to `(0,1)` (b) `(0,oo)` (c) `R` (d) none of these

A

(0,1)

B

`(0,oo)`

C

R

D

none of these

Text Solution

Verified by Experts

The eqquation of the normal to the given ellipse at the point `P(a cos theta, b sin theta) "is" ax sec theta- "by cosec" theta=a^(2)-b^(2)`. Then,
`y=((a)/(b) tan theta)x-((a^(2)-b^(2)))/(b) sin theta" "(1)`
Let `(a)/(b) tan theta=m`
so that
`y=((a)/(b) tan theta)x-((a^(2)-b^(2)))/(b) sin theta" "(1)`
Hence, the equation of the normal equation (1) becomes
`y=mx-((a^(2)-b^(2)))/(sqrt(a^(2)+b^(2)m^(2)))` ltbrlt `:. m in R, "as" m=(a)/(b) tan theta in R`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a tangent of slope is 2 of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 is normal to the circle x^2+y^2+4x+1=0 , then the maximum value of a b is 4 (b) 2 (c) 1 (d) none of these

Prove that the line y=m(x-1)+3sqrt(1+m^(2))-2 touches the circle x^(2)+y^(2)-2x+4y-4=0 for all real values of m.

The line l x+m y+n=0 is a normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 . then prove that (a^2)/(l^2)+(b^2)/(m^2)=((a^2-b^2)^2)/(n^2)

The range of values of alpha for which the line 2y=gx+alpha is a normal to the circle x^2+y^2+2gx+2gy-2=0 for all values of g is (a) [1,oo) (b) [-1,oo) (c) (0,1) (d) (-oo,1]

The equation cos^8x+bcos^4x+1=0 will have a solution if b belongs to (A) (-oo,2] (B) [2,oo] (C) [-oo,-2] (D) none of these

The straight lines represented by (y-m x)^2=a^2(1+m^2) and (y-n x)^2=a^2(1+n^2) from a (a) rectangle (b) rhombus (c) trapezium (d) none of these

The values of a for which the integral int_0^2|x-a|dxgeq1 is satisfied are (a) (2,oo) (b) (-oo,0) (c) (0,2) (d) none of these

Let f(x)=ax^2-bx+c^2, b != 0 and f(x) != 0 for all x ∈ R . Then (a) a+c^2 2b (c) a-3b+c^2 < 0 (d) none of these

The straight lines represented by (y-m x)^2=a^2(1+m^2) and (y-n x)^2=a^2(1+n^2) from a (a)rectangle (b) rhombus (c)trapezium (d) none of these

If the line l x+m y+n=0 cuts the ellipse ((x^2)/(a^2))+((y^2)/(b^2))=1 at points whose eccentric angles differ by pi/2, then find the value of (a^2l^2+b^2m^2)/(n^2) .