Home
Class 12
MATHS
If the tangent drawn at point (t^2,2t) o...

If the tangent drawn at point `(t^2,2t)` on the parabola `y^2=4x` is the same as the normal drawn at point `(sqrt(5)costheta,2sintheta)` on the ellipse `4x^2+5y^2=20,` then `theta=cos^(-1)(-1/(sqrt(5)))` (b) `theta=cos^(-1)(1/(sqrt(5)))` `t=-2/(sqrt(5))` (d) `t=-1/(sqrt(5))`

A

`theta=cos^(-1)(-(1)/(sqrt(5)))`

B

`theta=cos^(-1)((1)/(sqrt(5)))`

C

`t=-(2)/(sqrt(5))`

D

`t=-(1)/(sqrt(5))`

Text Solution

Verified by Experts

The eqaution of the tagent at `(t^(2),2t)` to the parabola `y^(2)=4x` is
`2ty=2(x+r^(2))`
or`ty=x+r^(2)`
or `x-ty+t^(2)=0" "(1)`
The equation of the normal at `(sqrt(5)cos theta, 2 sin theta)` on the ellipse `4x^(2)+5y^(2)=20`is
` (sqrt(5)sectheta)x-(2"cosec" theta)y=5-4`
` (sqrt(5)sectheta)x-(2"cosec" theta)y=1" "(2)`
Given that (1) and (2) represent the same line then.
`(sqrt(5)sectheta)/(1)=(-2"cosec" theta)/(-t)=(-1)/(r^(2))`
or `t=(2)/(sqrt(5))cot theta and t=-(1)/(2)sintheta`
or `(2)/(sqrt(5))cot theta =-(1)/(2)sintheta`
or `4 cos theta=-sqrt(5)(1-cos^(2)theta)`
on `sqrt(5)cos^(2) theta-4 costheta-sqrt(5)=0`
or `(cos theta-sqrt(5))(sqrt(5)cos theta+1)=0`
`or cos theta=-(1)/(sqrt(3))`
`or theta=cos^(-1)(-(1)/(sqrt(5)))`
Putting `cos theta-ssqrt(5) "in" t=-(1//2) sin theta,` we get
`t=-(1)/(2)sqrt(1-(1)/(5))=-(1)/(sqrt(5))`
Hence , `theta = cos^(-1)(-(1)/(sqrt(5))) and t=-(1)/(sqrt(5))`
Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

If cos (sin^(-1)(2/sqrt(5)) + cos^(-1)x) = 0, then x is equal to A) 1/sqrt(5) B) (-2/sqrt(5)) C) (2/sqrt(5)) D) 1

Let T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7)) +(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)+2) then-

If y = cos^(-1) ((1)/( sqrt(1+t^(2)))), x = sin^(-1) (sqrt((t^(2))/(1 + t^(2)))), "find " (dy)/(dx)

If veca=(3,1) and vecb=(1,2) represent the sides of a parallelogram then the angle theta between the diagonals of the paralelogram is given by (A) theta=cos^-1(1/sqrt(5)) (B) theta=cos^-1(2/sqrt(5)) (C) theta=cos^-1 (1/(2sqrt(5))) (D) theta = pi/2

The sum of all the solution(s) of the equation sin^(-1)2x=cos^(-1)x is 0 (2) 2/(sqrt(5)) (3) 1/(sqrt(5)) (4) (-1)/(sqrt(5))

If sin2theta=cos3theta"and"theta is an acute angle, then sintheta equal (a) (sqrt(5)-1)/4 (b) -((sqrt(5)-1)/4) (c) (sqrt(5)+1)/4 (d) (-sqrt(5)-1)/4

The eccentricity of the ellipse 4x^2+9y^2=36 is a. 1/(2sqrt(3)) b. 1/(sqrt(3)) c. (sqrt(5))/3 d. (sqrt(5))/6

The eccentricity of the ellipse 4x^2+9y^2=36 is a. 1/(2sqrt(3)) b. 1/(sqrt(3)) c. (sqrt(5))/3 d. (sqrt(5))/6

If sin^(-1)x+cot^(-1)(1/2)=pi/2,\ t h e n\ x is 0 b. 1/(sqrt(5)) c. 2/(sqrt(5)) d. (sqrt(3))/2