Home
Class 12
MATHS
For all real p, the line 2px+ysqrt(1-p^(...

For all real p, the line `2px+ysqrt(1-p^(2))=1` touches a fixed ellipse whose axex are the coordinate axes
The foci of the ellipse are

A

`(0,+-sqrt(3))`

B

`(0,+2//3)`

C

`(+-sqrt(3)//2,0)`

D

none of these

Text Solution

Verified by Experts

Let the ellipse be
`(x^(2))/(y^(2))+(y^(2))/(b^(2))=1`
The line `y==mx+-sqrt(a^(2)m^(2)+b^(2))` touches, the ellipse for all m.
Hence, it is identical with `y=-(2x)/(sqrt(1-p^(2)))+(1)/(sqrt(1-p^(2)))`
Hence, `m=-(2p)/(sqrt(1-p^(2)))`
and `a^(2)m^(2)+b^(2)=(1)/(1-p^(2))`
or `a^(2)(4p^(2))/(a-p^(2))+b^(2)(1)/(1-p^(2))`
or `p^(2)(4a^(2)-b^(2))+b^(2)-1=0`
This equation is true for all real p if
`b^(2)=1 and 4a^(2)=b^(2)`
`b^(2)=1 and a^(2)=(1)/(4)`
Therefore, the equation of the ellipse is
`(x^(2))/(1//4)+(y^(2))/(1)=1`
If e is its eccentricity, then
`(1)/(4)=1-e^(2) or e^(2)=(3)/(4) or e=(sqrt(3))/(2)`
be `=(sqrt(3))/(2)`
Hence, the foci are `(0,+-sqrt(3)//2)`
The equation of director circle is
`x^(2)+y^(2)=(5)/(4)`
Promotional Banner

Similar Questions

Explore conceptually related problems

For all real p, the line 2px+ysqrt(1-p^(2))=1 touches a fixed ellipse whose axex are the coordinate axes The locus of the point of intersection of perpendicular tangent is

Show that for all real p the line 2px+y sqrt(1-p^(2))=1 touches a fixed ellipse . Find the ecentricity of this ellipse.

The line 2px+ysqrt(1-p^(2))=1(abs(p)lt1) for different values of p, touches a fixed ellipse whose exes are the coordinate axes. Q. The eccentricity of the ellipse is

The line 2px+ysqrt(1-p^(2))=1(abs(p)lt1) for different values of p, touches a fixed ellipse whose exes are the coordinate axes. Q. The locus of the point of intersection of prependicular tangents of the ellipse is

Show that for all real values of 't' the line 2tx + ysqrt(1-t^2)=1 touches the ellipse.Find the eccentricity of the ellipse.

Find the equation of the ellipse whose axes are along the coordinate axes, foci at (0,\ +-4) and eccentricity 4/5.

An ellipse intersects the hyperbola 2x^2-2y^2 =1 orthogonally. The eccentricity of the ellipse is reciprocal to that of the hyperbola. If the axes of the ellipse are along the coordinate axes, then (a) the foci of ellipse are (+-1, 0) (b) equation of ellipse is x^2+ 2y^2 =2 (c) the foci of ellipse are (+-sqrt 2, 0) (d) equation of ellipse is (x^2 +y^2 =4)

Find the equation of the ellipse whose axes are along the coordinate axes, vertices are (+-5,0) and foci at (+-4,0) .

Find the equation of the ellipse whose axes are along the coordinate axes, vertices are (+-5,0) and foci at (+-4,0) .

Show that the line y= x + sqrt(5/6 touches the ellipse 2x^2 + 3y^2 = 1 . Find the coordinates of the point of contact.