Home
Class 12
MATHS
Let S and S'' be the fociof the ellipse ...

Let S and S'' be the fociof the ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1` whose eccentricity is i.e. P is a variable point on the ellipse. Consider the locus the incenter of `DeltaPSS''`
The eccentricity of the locus oc the P is (a) ellipse (b) hyperbola (a) parabola (d) circle

A

`sqrt((2e)/(1-e))`

B

`sqrt((2e)/(1+e))`

C

1

D

none of these

Text Solution

Verified by Experts


Let the coordinates of P be `(a cos theta, b sin theta)`
Here, SP= Focal distance of point `P=a-ae cos theta`
`S''P=a+ae cos theta`
SS''=2ae
If (h,k) are the coordinates of the incenter of `DeltaPSS''`, then
`h=(2ae(a cos theta)+a(1-ecos theta)(-ae)+a(1+e cos theta)ae)/(2ae+a(1-e cos theta)+a(1+e cos theta)`
`as cos theta" "(1)`
`and k=(2ae(a sin theta)+a(1-ecos theta)xx0+a(1+e cos theta)xx0)/(2ae+a(1-e cos theta)+a(1+e cos theta))`
`=(eb sin theta)/((e+1))" "(2)`
Eliminating `theta` from (1) and (2), we get
`(x^(2))/(a^(2)e^(2))+(y^(2))/({be//(e+1)}^(2))=1`
Which clearly represents an ellipse. Let `e_(1)` be its eccentricity . Then
`(b^(2)e^(2))/((e+1)^(2))=a^(2)e^(2)(1-e_(1)^(2))`
or`e_(1)^(2)=1-(b^(2))/(a^(2)(e+1)^(2))`
`or e_(1)^(2)=1-(1-e^(2))/((e+1))=1-(1-e)/(1+e)`
`or e_(1)^(2)=(2e)/(e+1)`
`or e_(1)=sqrt((2e)/(e+1))`
Maximum area of reactangle is
`2(ae)(("be")/(e+1))=(2abe^(2))/(e+1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let S and S'' be the foci of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 whose eccentricity is i.e. P is a variable point on the ellipse. Consider the locus of the incenter of DeltaPSS'' The maximum area of recatangle inscribed in the locus is

In the ellipse (x^(2))/(6)+(y^(2))/(8)=1 , the value of eccentricity is

The eccentricity of the ellipse (x^(2))/(36)+(y^(2))/(25)=1 is

The eccentricity of the ellipse (x^(2))/(16)+(y^(2))/(25) =1 is

The eccentricity of the ellipse (x^(2))/(49)+(y^(2))/(25)=1 is

P and Q are two points on the ellipse (x^(2))/(a^(2)) +(y^(2))/(b^(2)) =1 whose eccentric angles are differ by 90^(@) , then

If e' is the eccentricity of the ellipse (x^(2))/(a^(2)) + (y^(2))/(b^(2)) =1 (a gt b) , then

If e is eccentricity of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 (where,a lt b), then

Let S, S' be the focil and BB' be the minor axis of the ellipse (x^(2))/(a^(2)) + (y^(2))/(b^(2)) = 1. If angle BSS' = theta , then the eccentricity e of the ellipse is equal to

P is any point on the auxililary circle of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and Q is its corresponding point on the ellipse. Find the locus of the point which divides PQ in the ratio of 1:2 .