Home
Class 12
MATHS
The normal at a point P on the ellipse x...

The normal at a point `P` on the ellipse `x^2+4y^2=16` meets the x-axis at `Qdot` If `M` is the midpoint of the line segment `P Q ,` then the locus of `M` intersects the latus rectums of the given ellipse at points. `(+-((3sqrt(5)))/2+-2/7)` (b) `(+-((3sqrt(5)))/2+-(sqrt(19))/7)` `(+-2sqrt(3),+-1/7)` (d) `(+-2sqrt(3)+-(4sqrt(3))/7)`

A

`(+-3sqrt(5)//2,+-2//7)`

B

`(+-3sqrt(5)//2,+-sqrt(19)//7)`

C

`+-2sqrt(3),+-17)`

D

`(+-2sqrt(3),+-4sqrt(3)//7)`

Text Solution

Verified by Experts

Given ellipse is `(x^(2))/(16)+(y^(2))/(4)=1`. Normal at `P(4 cos phi, 2 sin phi)`,
given by `4x sec phi-2y "cosec"phi=12`
It meets x-axist at
Let `M-=(alpha,beta)`
be the point of PQ.

`:. alpha=(3cos phi+4 cos phi)/(2)`
`=(7)/(2)cos phi`
or `cos phi=(2)/(7)alpha`
Using `cos^(2)phi+sin^(2)phi=1`, we have
`(4)/(49)alpha^(2)+beta^(2)=1`
or `(4)/(49)x^(2)+y^(2)=1`
Now, the rectum lines of given ellipse are `x=+-2sqrt(3)`
Solving (1) and (2), we have
`(48)/(49)+y^(2)=1`
`or y=+-(1)/(7)`
The points of intersection are `(+-2sqrt(3),+-1//7)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The normal at a point P on the ellipse x^2+4y^2=16 meets the x-axis at Qdot If M is the midpoint of the line segment P Q , then the locus of M intersects the latus rectums of the given ellipse at points. (a) (+-((3sqrt(5)))/2+-2/7) (b) (+-((3sqrt(5)))/2+-(sqrt(19))/7) (c) (+-2sqrt(3),+-1/7) (d) (+-2sqrt(3)+-(4sqrt(3))/7)

(sqrt(7)+2sqrt(3))(sqrt(7)-2sqrt(3))

The eccentricity of the ellipse 4x^2+9y^2=36 is a. 1/(2sqrt(3)) b. 1/(sqrt(3)) c. (sqrt(5))/3 d. (sqrt(5))/6

The eccentricity of the ellipse 4x^2+9y^2=36 is a. 1/(2sqrt(3)) b. 1/(sqrt(3)) c. (sqrt(5))/3 d. (sqrt(5))/6

Find the 5th term of the progression 1,((sqrt(2)-1))/(2sqrt(3)),\ ((3-2sqrt(2))/(12)),\ ((5sqrt(2)-7)/(24sqrt(3))),\ ddot

Factorise: (i) 4sqrt(3)x^(2) + 5x-2sqrt(3) (ii) 7sqrt(2)x^(2)-10x - 4sqrt(2)

The latus rectum of the conic 3x^2+4y^2-6x+8y-5=0 is a. 3 b. (sqrt(3))/2 c. 2/(sqrt(3)) d. none of these

Simplify: (i) (7+3\ sqrt(5))/(3+\ sqrt(5))-(7-3\ sqrt(5))/(3-\ sqrt(5)) (ii) 1/(2+sqrt(3)\ )+2/(sqrt(5)-\ sqrt(3))+1/(2-\ sqrt(5))

The length of latus rectum of the ellipse 3x^(2) + y^(2) = 12 is (i) 4 (ii) 3 (iii) 8 (iv) (4)/(sqrt(3))

Rationalise the denominator in each of the following: (i) 2/(sqrt(7)) (ii) 2/(3sqrt(3)) (iii) (2sqrt(7))/(sqrt(11))