Home
Class 12
MATHS
In triangle A B C , if sinAcosB=1/4 and ...

In triangle `A B C ,` if `sinAcosB=1/4 and 3t a n A=t a n B ,t h e ncot^2A` is equal to

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the problem step by step. ### Given: 1. \( \sin A \cos B = \frac{1}{4} \) 2. \( 3 \tan A = \tan B \) We need to find \( \cot^2 A \). ### Step 1: Express \( \tan B \) in terms of \( \tan A \) From the second equation, we can express \( \tan B \) as: \[ \tan B = 3 \tan A \] ### Step 2: Rewrite \( \tan A \) and \( \tan B \) in terms of sine and cosine Using the definitions of tangent: \[ \tan A = \frac{\sin A}{\cos A}, \quad \tan B = \frac{\sin B}{\cos B} \] Substituting these into the equation from Step 1: \[ \frac{\sin B}{\cos B} = 3 \cdot \frac{\sin A}{\cos A} \] Cross-multiplying gives: \[ \sin B \cos A = 3 \sin A \cos B \] ### Step 3: Substitute \( \sin A \cos B \) from the given condition We know from the problem statement that: \[ \sin A \cos B = \frac{1}{4} \] Substituting this into the equation from Step 2: \[ \sin B \cos A = 3 \cdot \frac{1}{4} \] This simplifies to: \[ \sin B \cos A = \frac{3}{4} \] ### Step 4: Use the sine addition formula Now we have: \[ \sin A \cos B + \sin B \cos A = \frac{1}{4} + \frac{3}{4} = 1 \] This expression can be recognized as: \[ \sin(A + B) = 1 \] Thus, we have: \[ A + B = 90^\circ \] ### Step 5: Find angle \( C \) In triangle \( ABC \), the sum of angles is \( 180^\circ \): \[ A + B + C = 180^\circ \] Since \( A + B = 90^\circ \): \[ C = 180^\circ - 90^\circ = 90^\circ \] ### Step 6: Relate \( \tan B \) to \( \cot A \) From the identity \( \tan(90^\circ - A) = \cot A \), we have: \[ \tan B = \tan(90^\circ - A) = \cot A \] Thus, we can write: \[ 3 \tan A = \cot A \] ### Step 7: Convert to cotangent Using the identity \( \cot A = \frac{1}{\tan A} \): \[ 3 \tan A = \frac{1}{\tan A} \] Multiplying both sides by \( \tan A \) (assuming \( \tan A \neq 0 \)): \[ 3 \tan^2 A = 1 \] This gives: \[ \tan^2 A = \frac{1}{3} \] ### Step 8: Find \( \cot^2 A \) Since \( \cot A = \frac{1}{\tan A} \): \[ \cot^2 A = \frac{1}{\tan^2 A} = \frac{1}{\frac{1}{3}} = 3 \] ### Final Answer Thus, the value of \( \cot^2 A \) is: \[ \cot^2 A = 3 \]

Let's solve the problem step by step. ### Given: 1. \( \sin A \cos B = \frac{1}{4} \) 2. \( 3 \tan A = \tan B \) We need to find \( \cot^2 A \). ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Exercise (Linked Comprehension Type)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Concept App. 3.10|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In triangle A B C , if sinAcosB=1/4a n d3t a n A=t a n B ,t h e ncot^2A is equal to 2 (b) 3 (c) 4 (d) 5.

In a triangle A B C , right angled at C ,t a n A+t a n B is equal to a. a+b b. (c^2)/(a b) c. (a^2)/(b c) d. (b^2)/(a c)

In triangle A B C , if cosA+cosB+cosC=7/4, t h e n R/r is equal to 3/4 (b) 4/3 (c) 2/3 (d) 3/2

If A=[1ta n x-t a n x1],t h e n detA^T A^(-1) is

In a triangle A B C , if a : b : c=3:7:8,t h e n R : r is equal to a. 2:7 b. 7:2 c. 3:7 d. 7:3

If A+B+C=180^0 , then (t a n A+t a n B+t a n C)/(t a n A\ t a n B\ t a n C) is equal to a. t a n A t a n B t a n C b. 0 c. 1 d. none of these

If A-B=pi//4 , then (1+t a n A)(1-t a n B) is equal to 2 b. 1 c. 0 d. 3

If A+B=C , then write the value of t a n A\ t a n B\ t a n Cdot

In Delta A B C , prove that t a n A+t a n B+t a n Cgeq3sqrt(3),w h e r eA ,B ,C are acute angles.

If in a triangle A B C ,(a+b+c)(b+c-a)=kdotb c ,t h e n:

CENGAGE ENGLISH-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Single Correct Answer Type)
  1. tan100^0+tan125^0+tan100^0tan125^0 is equal to

    Text Solution

    |

  2. If "cot"(alpha+beta=0, then "sin"(alpha+2beta can be -sinalpha (b) si...

    Text Solution

    |

  3. In triangle A B C , if sinAcosB=1/4 and 3t a n A=t a n B ,t h e ncot^2...

    Text Solution

    |

  4. Let (sin(theta-alpha))/("sin"(theta-beta))=a/b a n d(cos(theta-alpha))...

    Text Solution

    |

  5. If A,B,C are angles of a triangle, then 2sinA/2cos e c B/2sinC/2-sinAc...

    Text Solution

    |

  6. If alt=3cosx+5sin(x-pi/6)lt=b for all x then (a , b) is (-sqrt(19),sqr...

    Text Solution

    |

  7. If x/(costheta)=y/(cos(theta-(2pi)/3))=z/(cos(theta+(2pi)/3)) 1 (b) ...

    Text Solution

    |

  8. Let x=sin1^@ then find the value of the expression 1/(cos0^@cos1^@)+1/...

    Text Solution

    |

  9. If theta is eliminated from the equations x=a"cos"(theta-alpha) and y=...

    Text Solution

    |

  10. The minimum vertical distance between the graphs of y=2+s in xa n dy=c...

    Text Solution

    |

  11. If tan^2(pi-A)/4+tan^2(pi-B)/4+tan^2(pi-C)/4=1 , then A B C is equila...

    Text Solution

    |

  12. if (1+tanalpha)(1+tan4alpha) =2 where alpha in (0 , pi/16) then alpha...

    Text Solution

    |

  13. If cos28^0+sin28^0=k^3, t h e ncos17^0 is equal to (k^3)/(sqrt(2)) (b...

    Text Solution

    |

  14. Let f(theta)=cottheta/(1+cottheta) and alpha+beta=(5pi)/4 then the va...

    Text Solution

    |

  15. If y = (1 + tan A) (1 - tan B), where A -B=pi/4 then (y+ 1)^(y + 1) is...

    Text Solution

    |

  16. If (sinx)/(siny)=1/2,(cosx)/(cosy)=3/2 , where x , y , in (0,pi/2), th...

    Text Solution

    |

  17. If cot^2x=cot(x-y)(x-z),t h e ncot2x is equal to (w h e r ex!=pi/4) ....

    Text Solution

    |

  18. In a A B C , if tanA:tanB :tanC=3:4:5, then the value of sinA sinB si...

    Text Solution

    |

  19. Find the value of sin 27^(@)-cos27^(@)?

    Text Solution

    |

  20. If costheta1 2costheta2, then tan(theta(1-theta2))/2tan(theta1+theta2)...

    Text Solution

    |